PROBABILISTIC ASPECTS OF VON NEUMANN ALGEBRAS

被引:9
作者
PADMANABHAN, AR
机构
[1] Department of Mathematics, Monash University, Clayton
关键词
D O I
10.1016/0022-1236(79)90058-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a von Neumann Algebra, admitting a finite trace. It is shown that convergence in measure of a sequence of Normal Operators measurable with respect to G, is preserved by any continuous function (of the Complex Plane to itself). Then a Theorem on convergence in the mean is proved. Also obtained is a non-commutative generalization of the Kolmogorov-Gelfand-Yaglom Result on the information of one measure, relative to another measure, contained in a σ-field. © 1979.
引用
收藏
页码:139 / 149
页数:11
相关论文
共 6 条
[1]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[2]   INFORMATION AND SUFFICIENT SUB-FIELDS [J].
GHURYE, SG .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (06) :2056-+
[3]  
PADMANABHAN AR, 1967, T AM MATH SOC, V3, P359
[4]   A NON-COMMUTATIVE EXTENSION OF ABSTRACT INTEGRATION [J].
SEGAL, IE .
ANNALS OF MATHEMATICS, 1953, 57 (03) :401-457
[5]  
Stinespring W.F., 1959, T AM MATHEM SOC, V90, P15, DOI [10.1090/S0002-9947-1959-0102761-9, DOI 10.1090/S0002-9947-1959-0102761-9]
[6]  
Umegaki H, 1962, KODAI MATH SEM REP, V14, P59, DOI DOI 10.2996/KMJ/1138844604