A BOUND ON THE NUMBER OF PERIODIC-ORBITS OF CERTAIN PIECEWISE LINEAR-MAPS

被引:1
作者
SCAROWSKY, M
BOYARSKY, A
机构
关键词
D O I
10.1016/0022-247X(88)90058-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:247 / 250
页数:4
相关论文
共 50 条
[31]   LINEAR-STABILITY OF PERIODIC-ORBITS IN LAGRANGIAN SYSTEMS [J].
MACKAY, RS ;
MEISS, JD .
PHYSICS LETTERS A, 1983, 98 (03) :92-94
[33]   A GENEALOGY FOR THE PERIODIC-ORBITS OF A CLASS OF 1D MAPS [J].
RINGLAND, J .
PHYSICA D, 1994, 79 (2-4) :289-298
[34]   AN EXACT FORMULA FOR THE MEASURE DIMENSIONS ASSOCIATED WITH A CLASS OF PIECEWISE LINEAR-MAPS [J].
GERONIMO, JS ;
HARDIN, DP .
CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) :89-98
[35]   Periodic orbits for perturbations of piecewise linear systems [J].
Carmona, Victoriano ;
Fernandez-Garcia, Soledad ;
Freire, Emilio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) :2244-2266
[36]   ON THE NUMBER OF PERIODIC-ORBITS FOR HAMILTONS EQUATIONS ON A STARSHAPED ENERGY SURFACE [J].
BERESTYCKI, H ;
LASRY, JM ;
MANCINI, G ;
RUF, B .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (01) :15-18
[37]   Forcing of periodic orbits for interval maps and renormalization of piecewise affine maps [J].
Martens, M ;
Tresser, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (09) :2863-2870
[38]   THE MINIMAL NUMBER OF PERIODIC-ORBITS OF PERIODS GUARANTEED IN SHARKOVSKII THEOREM [J].
DU, BS .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1985, 31 (01) :89-103
[39]   SOME NUMBER THEORETICAL ASPECTS ON PERIODIC-ORBITS OF A TENT MAP [J].
DOI, SJ .
ADVANCES IN APPLIED MATHEMATICS, 1993, 14 (01) :51-61