A BOUND ON THE NUMBER OF PERIODIC-ORBITS OF CERTAIN PIECEWISE LINEAR-MAPS

被引:1
作者
SCAROWSKY, M
BOYARSKY, A
机构
关键词
D O I
10.1016/0022-247X(88)90058-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:247 / 250
页数:4
相关论文
共 50 条
[21]   ASYMPTOTIC PROPERTIES OF THE PERIODIC-ORBITS OF THE CAT MAPS [J].
KEATING, JP .
NONLINEARITY, 1991, 4 (02) :277-307
[22]   PERIODIC-ORBITS FOR INTERVAL MAPS WITH SHARP CUSPS [J].
MISIUREWICZ, M ;
KAWCZYNSKI, AL .
PHYSICA D, 1991, 52 (2-3) :191-203
[23]   ON THE NUMBER OF PERIODIC-ORBITS OF A CONTINUOUS MAPPING OF THE CIRCLE [J].
LLIBRE, J ;
REVENTOS, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (01) :51-54
[24]   ON THE BIFURCATION OF THE PERIODIC-ORBITS IN CERTAIN HAMILTONIAN-SYSTEMS [J].
SAITO, N ;
TAKEDA, T ;
SHIMIZU, Y .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1989, 58 (02) :423-430
[26]   THE PRIME NUMBER THEOREM FOR THE PERIODIC-ORBITS OF A BERNOULLI FLOW [J].
LALLEY, SP .
AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (05) :385-398
[27]   SYMMETRIES AND STABLE PERIODIC-ORBITS FOR ONE-DIMENSIONAL MAPS [J].
MENDES, RV .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (04) :855-857
[28]   THE BIRTH PROCESS OF PERIODIC-ORBITS IN NON-TWIST MAPS [J].
VANDERWEELE, JP ;
VALKERING, TP .
PHYSICA A, 1990, 169 (01) :42-72
[29]   BIRKHOFF PERIODIC-ORBITS FOR TWIST MAPS WITH THE GRAPH INTERSECTION PROPERTY [J].
BERNSTEIN, D .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1985, 5 :531-537
[30]   SCALING AT THE ONSET OF SPATIAL DISORDER IN COUPLED PIECEWISE LINEAR-MAPS [J].
KASPAR, F ;
SCHUSTER, HG .
PHYSICS LETTERS A, 1986, 113 (09) :451-453