THE MULTIPLICATIVE COMPLEXITY OF QUADRATIC BOOLEAN FORMS

被引:16
|
作者
MIRWALD, R
SCHNORR, CP
机构
[1] Fachbereich Mathematik/Informatik, Universität Frankfurt, Robert, D-6000 Frankfurt
关键词
D O I
10.1016/0304-3975(92)90235-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let the multiplicative complexity L(f) of a boolean function f be the minimal number of and-gates that are sufficient to evaluate f by circuits over the basis AND, +, 1. We characterize the multiplicative complexity L(f) of quadratic boolean forms f; it is half the rank of an associated matrix. Two quadratic boolean forms f;g have the same complexity L(f)=L(g) iff they are isomorphic by a linear isomorphism. We characterize computational independence of two quadratic boolean forms f1, f2 in the sense that L(f1, f2) = L(f1) + L(f2).
引用
收藏
页码:307 / 328
页数:22
相关论文
共 50 条