Some integral inequalities for m-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function

被引:5
作者
Abbas, G. [1 ]
Farid, G. [2 ]
机构
[1] Govt Coll Bhalwal, Dept Math, Sargodha, Pakistan
[2] COMSATS Inst Informat Technol, Dept Math, Attock Campus, Attock, Pakistan
关键词
convex functions; Hadamard inequality; fractional integral operators; Mittag-Leffler function; Primary; 26A51; 26A33; 33E12;
D O I
10.1080/23311835.2016.1269589
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are interested to prove some Hadamard and Fejer-Hadamard-type integral inequalities for m-convex functions via generalized fractional integral operator containing the generalized Mittag-Leffler function. In connection with we obtain some known results.
引用
收藏
页数:12
相关论文
共 24 条
[21]   Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities [J].
Sarikaya, Mehmet Zeki ;
Set, Erhan ;
Yaldiz, Hatice ;
Basak, Nagihan .
MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) :2403-2407
[22]   Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel [J].
Srivastava, H. M. ;
Tomovski, Zivorad .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (01) :198-210
[23]   On the nonlocal Katugampola fractional integral conditions for fractional Langevin equation [J].
Thaiprayoon, Chatthai ;
Ntouyas, Sotiris K. ;
Tariboon, Jessada .
ADVANCES IN DIFFERENCE EQUATIONS, 2015, :1-16
[24]  
Toader G, 1984, P C APPROXIMATION OP, P329