Some integral inequalities for m-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function

被引:5
作者
Abbas, G. [1 ]
Farid, G. [2 ]
机构
[1] Govt Coll Bhalwal, Dept Math, Sargodha, Pakistan
[2] COMSATS Inst Informat Technol, Dept Math, Attock Campus, Attock, Pakistan
关键词
convex functions; Hadamard inequality; fractional integral operators; Mittag-Leffler function; Primary; 26A51; 26A33; 33E12;
D O I
10.1080/23311835.2016.1269589
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are interested to prove some Hadamard and Fejer-Hadamard-type integral inequalities for m-convex functions via generalized fractional integral operator containing the generalized Mittag-Leffler function. In connection with we obtain some known results.
引用
收藏
页数:12
相关论文
共 24 条
[1]  
Abbas G., HADAMARD FEJER HADAM
[2]   Variational Problems Involving a Caputo-Type Fractional Derivative [J].
Almeida, Ricardo .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (01) :276-294
[3]  
Bakula M.K., 2004, J INEQUALITIES PURE, V5
[4]  
Bakula M.K., 2008, J INEQUAL PURE APPL, V9, P12
[5]   Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals [J].
Chen, Hua ;
Katugampola, Udita N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) :1274-1291
[6]   ON MINKOWSKI AND HERMITE-HADAMARD INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRATION [J].
Dahmani, Zoubir .
ANNALS OF FUNCTIONAL ANALYSIS, 2010, 1 (01) :51-58
[7]  
Dragomir S. S., 2002, TAMKANG J MATH, V33, P45
[8]   Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].
Dragomir, SS ;
Agarwal, RP .
APPLIED MATHEMATICS LETTERS, 1998, 11 (05) :91-95
[9]  
Dragomir SS., 1993, STUDIA U, V38, P21
[10]   New mean value theorems and generalization of Hadamard inequality via coordinated m-convex functions [J].
Farid, G. ;
Marwan, M. ;
Rehman, Atiq Ur .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,