TIME-DEPENDENT PROPAGATOR WITH POINT INTERACTION

被引:35
作者
ALBEVERIO, S
BRZEZNIAK, Z
DABROWSKI, L
机构
[1] Fakultat fur Math., Ruhr-Univ., Bochum
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 14期
关键词
D O I
10.1088/0305-4470/27/14/021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute the time-dependent Schrodinger propagator with a point interaction in dimension n less-than-or-equal-to 3 including the new cases of n = 2 and the most general interaction supported by a point for n = 1. We also give the small-time asymptotics for n less-than-or-equal-to 3. The case n = 2 has the peculiarity of involving logarithmic terms in the expansion.
引用
收藏
页码:4933 / 4943
页数:11
相关论文
共 13 条
  • [1] ALBEVEIRO S, 1994, IN PRESS J FUNCT ANA
  • [2] ALBEVEIRO S, 1988, SOLVABLE MODELS QUAN
  • [3] Berry M. V., 1980, European Journal of Physics, V1, P240, DOI 10.1088/0143-0807/1/4/011
  • [4] A NEW CLASS OF POINT INTERACTIONS IN ONE DIMENSION
    CHERNOFF, PR
    HUGHES, RJ
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (01) : 97 - 117
  • [5] STATISTICAL MECHANICS WITH TOPOLOGICAL CONSTRAINTS .I.
    EDWARDS, SF
    [J]. PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1967, 91 (573P): : 513 - &
  • [6] Erdelyi A., 1954, TABLES INTEGRAL TRAN, VII
  • [7] EXPLICIT TIME-DEPENDENT SCHRODINGER PROPAGATORS
    GAVEAU, B
    SCHULMAN, LS
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (10): : 1833 - 1846
  • [8] Gradshteyn I.S., 1965, TABLES OF INTEGRALS
  • [9] EXPLICIT DERIVATION OF THE PROPAGATOR FOR A DIRAC-DELTA POTENTIAL
    MANOUKIAN, EB
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (01): : 67 - 70
  • [10] Morandi G., 1984, European Journal of Physics, V5, P49, DOI 10.1088/0143-0807/5/1/011