ON THE ZEROS OF SOLUTIONS TO GINZBURG-LANDAU TYPE SYSTEMS

被引:27
作者
BAUMAN, P
CARLSON, NN
PHILLIPS, D
机构
关键词
GINZBURG-LANDAU SYSTEM; VORTICES; ZEROS;
D O I
10.1137/0524073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors consider minimizers of a nonlinear functional whose Euler-Lagrange equation includes the Ginzburg-Landau system. For a certain class of Dirichlet data, it is proved that a minimizer has exactly one zero which necessarily has winding number +/-1. Moreover, the same result holds for solutions of the corresponding parabolic system at all sufficiently large, fixed values of time, under certain conditions on the initial and boundary values. Their result on minimizers supports several theories from physics (concerning interacting bosons, for example). These theories predict that stable solutions with isolated zeros (called vortices) exist, and each zero of a stable solution has winding number +/-1.
引用
收藏
页码:1283 / 1293
页数:11
相关论文
共 12 条
[1]  
ABRIKOSOV AA, 1957, SOV PHYS JETP-USSR, V5, P1174
[2]   QUANTITATIVE MAXIMUM-PRINCIPLES AND STRONGLY COUPLED GRADIENT-LIKE REACTION-DIFFUSION SYSTEMS [J].
ALIKAKOS, ND .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1983, 94 :265-286
[3]  
Giaquinta M., 1983, MULTIPLE INTEGRALS C
[4]  
Ginzburg V.L., 1950, ZH EKSP TEOR FIZ, V20, P1064, DOI DOI 10.1142/S0217979210055378
[5]  
GROSS EP, 1966, PHYSICS MANY PARTICL, V1
[6]   ON THE LOCAL BEHAVIOR OF SOLUTIONS OF NON-PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS [J].
HARTMAN, P ;
WINTNER, A .
AMERICAN JOURNAL OF MATHEMATICS, 1953, 75 (03) :449-476
[7]  
Ladyzhenskaya O. A., 1968, TRANSL MATH MONOGRAP, V23
[8]   STABILIZATION OF SOLUTIONS OF NONLINEAR AND DEGENERATE EVOLUTION-EQUATIONS [J].
LANGLAIS, M ;
PHILLIPS, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1985, 9 (04) :321-333
[9]   VORTICES IN COMPLEX SCALAR FIELDS [J].
NEU, JC .
PHYSICA D, 1990, 43 (2-3) :385-406
[10]   2 CONJECTURES IN FIXED MEMBRANE EIGENVALUE PROBLEM [J].
PAYNE, LE .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1973, 24 (05) :721-729