PARITY AND GENERALIZED MULTIPLICITY

被引:51
作者
FITZPATRICK, PM [1 ]
PEJSACHOWICZ, J [1 ]
机构
[1] POLITECN TORINO, DIPARTMENTO MATEMAT, I-10128 TURIN, ITALY
关键词
D O I
10.2307/2001865
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assuming that X and Y are Banach spaces and alpha:[a, b] --> L(X, Y) is a path of linear Fredholm operators with invertible endpoints, in [F-P1] we defined a homotopy invariant of alpha, sigma-(alpha, I) is-an-element-of Z2, the parity of alpha on I. The parity plays a fundamental role in bifurcation problems, and in degree theory for nonlinear Fredholm-type mappings. Here we prove (a) that, generically, the parity is a mod 2 count of the number of transversal intersections of alpha-(I) with the set of singular operators, (b) that if lambda-0 is an isolated singular point of alpha, then the local parity [GRAPHICS] remains invariant under Lyapunov-Schmidt reduction, and (c) that sigma-(alpha, lambda-0) = (-1)M(G)(lambda-0), where M(G)(lambda-0) is any one of the various concepts of generalized multiplicity which have been defined in the context of linearized bifurcation data.
引用
收藏
页码:281 / 305
页数:25
相关论文
共 44 条
[1]  
Aldo VISALBERGHI, 1958, ESPERIENZA VALUTAZIO
[2]   GALERKIN APPROXIMATIONS IN SEVERAL PARAMETER BIFURCATION PROBLEMS [J].
ALEXANDER, JC ;
FITZPATRICK, PM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1980, 87 (MAY) :489-500
[3]  
[Anonymous], 1971, J FUNCT ANAL, DOI [DOI 10.1016/0022-1236(71)90015-2, DOI 10.1201/9781420035506.CH2]
[4]  
Chow S.N, 1982, GRUNDLEHREN MATH WIS, V251
[5]  
ENI VM, 1969, MAT ISSLED, V4, P32
[6]   OPTIMAL MULTIPLICITY IN LOCAL BIFURCATION-THEORY .1. GENERALIZED GENERIC EIGENVALUES [J].
ESQUINAS, J ;
LOPEZGOMEZ, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 71 (01) :72-92
[7]   OPTIMAL MULTIPLICITY IN LOCAL BIFURCATION-THEORY .2. GENERAL-CASE [J].
ESQUINAS, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 75 (02) :206-215
[8]   A LOCAL BIFURCATION THEOREM FOR C1-FREDHOLM MAPS [J].
FITZPATRICK, PM ;
PEJSACHOWICZ, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (04) :995-1002
[9]  
FITZPATRICK PM, 1986, P SYMP PURE MATH, V45, P425
[10]   HOMOTOPY, LINEARIZATION, AND BIFURCATION [J].
FITZPATRICK, PM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (02) :171-184