APPROXIMATING SOLUTIONS OF EQUATIONS BY COMBINING NEWTON-LIKE METHODS

被引:0
作者
Argyros, Ioannis K. [1 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
来源
JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS | 2008年 / 15卷 / 01期
关键词
Newton-like method; modified Newton-like method; Banach space; semilocal convergence; Frechet-derivative; Newton-Kantorovich-type hypotheses;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In cases sufficient conditions for the semilocal convergence of Newton-like methods are violated, we start with a modified Newton-like method (whose weaker convergence conditions hold) until we stop at a certain finite step. Then using as a starting guess the point found above we show convergence of the Newton-like method to a locally unique solution of a nonlinear operator equation in a Banach space setting. A numerical example is also provided.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 6 条
[1]   A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space [J].
Argyros, IK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (02) :374-397
[2]  
ARGYROS IK, 2005, APPROXIMATE SOLUTION
[3]   ON NEWTON-LIKE METHODS [J].
DENNIS, JE .
NUMERISCHE MATHEMATIK, 1968, 11 (04) :324-&
[4]   AFFINE INVARIANT CONVERGENCE THEOREMS FOR NEWTONS METHOD AND EXTENSIONS TO RELATED METHODS [J].
DEUFLHARD, P ;
HEINDL, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) :1-10
[5]  
Kantorovich L. V., 1982, FUNCTIONAL ANAL, VSecond
[6]   A CONVERGENCE THEOREM FOR NEWTON-LIKE METHODS IN BANACH-SPACES [J].
YAMAMOTO, T .
NUMERISCHE MATHEMATIK, 1987, 51 (05) :545-557