NUMERICAL-ANALYSIS OF A BIDIMENSIONAL HENCKY PROBLEM APPROXIMATED BY A DISCONTINUOUS FINITE-ELEMENT METHOD

被引:1
作者
BENDHIA, H [1 ]
机构
[1] ECOLE CENT PARIS,MECAN SOLS & STRUCT LAB,F-92295 CHATENAY MALABRY,FRANCE
关键词
DISCONTINUOUS FINITE ELEMENTS; ERROR ESTIMATES; PLASTICITY;
D O I
10.1137/0729064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite element method for the solution of a bidimensional elastoplastic Hencky problem is formulated and analyzed. The discrete spaces consist of discontinuous piecewise polynomial functions. Convergence results for the discrete displacements are proved. Then, error estimates in L2-norms are stated for the stress tensors, under a piecewise H-2-regularity hypothesis that is both weaker than the one commonly used and physically admissible.
引用
收藏
页码:1059 / 1073
页数:15
相关论文
共 26 条
[21]  
MERCIER B, 1976, CR HEBD ACAD SCI, V282, P645
[22]  
Rockafellar R.T., 1970, CONVEX ANAL, V2nd
[23]  
SUQUET P, 1982, THESIS U PARIS 6
[24]  
TEMAM R, 1980, J MECANIQUE, V19, P493
[25]  
TEMAM R, 1983, PROBLEMES VARIATIONN
[26]   ELLIPTIC COLLOCATION-FINITE ELEMENT METHOD WITH INTERIOR PENALTIES [J].
WHEELER, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (01) :152-161