NUMERICAL-ANALYSIS OF A BIDIMENSIONAL HENCKY PROBLEM APPROXIMATED BY A DISCONTINUOUS FINITE-ELEMENT METHOD

被引:1
作者
BENDHIA, H [1 ]
机构
[1] ECOLE CENT PARIS,MECAN SOLS & STRUCT LAB,F-92295 CHATENAY MALABRY,FRANCE
关键词
DISCONTINUOUS FINITE ELEMENTS; ERROR ESTIMATES; PLASTICITY;
D O I
10.1137/0729064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite element method for the solution of a bidimensional elastoplastic Hencky problem is formulated and analyzed. The discrete spaces consist of discontinuous piecewise polynomial functions. Convergence results for the discrete displacements are proved. Then, error estimates in L2-norms are stated for the stress tensors, under a piecewise H-2-regularity hypothesis that is both weaker than the one commonly used and physically admissible.
引用
收藏
页码:1059 / 1073
页数:15
相关论文
共 26 条
[1]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[2]  
AGMON S, 1965, LECTURES ELLIPTIC BO
[3]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[4]   NONCONFORMING ELEMENTS IN FINITE-ELEMENT METHOD WITH PENALTY [J].
BABUSKA, I ;
ZLAMAL, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (05) :863-875
[5]  
BAKER GA, 1977, MATH COMPUT, V31, P45, DOI 10.1090/S0025-5718-1977-0431742-5
[6]  
BENDHIA H, 1989, MATH METHOD APPL SCI, V11, P169
[7]  
BENDHIA H, 1987, THESIS U PARIS 6
[8]  
BENDHIA H, 1987, CMAP161 EC POL RAPP
[9]  
CHRISTIANSEN E, 1979, ENERGY METHOD FINITE
[10]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO