A NONSTANDARD REPRESENTATION OF FEYNMANS PATH-INTEGRALS

被引:21
作者
NAKAMURA, T
机构
[1] Sundai Preparatory School, Tokyo
关键词
D O I
10.1063/1.529433
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A nonstandard path space is constructed that gives the mathematically rigorous formulation for the path integral representation of the fundamental solution to the Cauchy problem for the Dirac equation in (1 + 1)-dimensional space-time. Nonstandard analysis makes the mathematical concepts elementary, consequently, the procedures to prove theorems are considerably simplified. A difference scheme with infinitesimal spacing is available in determining the probability distribution over the path-space and this method is also available for the heat equation and for the free Schrodinger equation.
引用
收藏
页码:457 / 463
页数:7
相关论文
共 19 条
[1]   NONSTANDARD REPRESENTATION FOR BROWNIAN-MOTION AND ITO INTEGRATION [J].
ANDERSON, RM .
ISRAEL JOURNAL OF MATHEMATICS, 1976, 25 (1-2) :15-46
[2]   CLASSICAL-MODEL OF THE DIRAC ELECTRON [J].
BARUT, AO ;
ZANGHI, N .
PHYSICAL REVIEW LETTERS, 1984, 52 (23) :2009-2012
[3]   PATH-INTEGRAL DERIVATION OF THE DIRAC PROPAGATOR [J].
BARUT, AO ;
DURU, IH .
PHYSICAL REVIEW LETTERS, 1984, 53 (25) :2355-2358
[4]  
Feynman R., 1965, QUANTUM MECH PATH IN
[5]   SPACE-TIME APPROACH TO NON-RELATIVISTIC QUANTUM MECHANICS [J].
FEYNMAN, RP .
REVIEWS OF MODERN PHYSICS, 1948, 20 (02) :367-387
[6]   A CONSTRUCTION OF THE FUNDAMENTAL SOLUTION FOR THE SCHRODINGER-EQUATION [J].
FUJIWARA, D .
JOURNAL D ANALYSE MATHEMATIQUE, 1979, 35 :41-96
[7]   DIRAC-EQUATION PATH INTEGRAL - INTERPRETING THE GRASSMANN VARIABLES [J].
GAVEAU, B .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1989, 11 (1-2) :31-51
[8]   RELATIVISTIC EXTENSION OF THE ANALOGY BETWEEN QUANTUM-MECHANICS AND BROWNIAN-MOTION [J].
GAVEAU, B ;
JACOBSON, T ;
KAC, M ;
SCHULMAN, LS .
PHYSICAL REVIEW LETTERS, 1984, 53 (05) :419-422
[9]   GRASSMANN-VALUED PROCESSES FOR THE WEYL AND THE DIRAC EQUATIONS [J].
GAVEAU, B ;
SCHULMAN, LS .
PHYSICAL REVIEW D, 1987, 36 (04) :1135-1140
[10]  
Hurd AE, 1985, INTRO NONSTANDARD RE