Finite mixture models and model-based clusteringFinite mixture models and model-based clustering

被引:209
作者
Melnykov, Volodymyr [1 ]
Maitra, Ranjan [2 ]
机构
[1] North Dakota State Univ, Dept Stat, Fargo, ND 58105 USA
[2] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
EM algorithm; model selection; variable selection; diagnostics; two-dimensional gel electrophoresis data; proteomics; text mining; magnitude magnetic resonance image;
D O I
10.1214/09-SS053
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Finite mixture models have a long history in statistics, having been used to model population heterogeneity, generalize distributional assumptions, and lately, for providing a convenient yet formal framework for clustering and classification. This paper provides a detailed review into mixture models and model-based clustering. Recent trends as well as open problems in the area are also discussed.
引用
收藏
页码:80 / 116
页数:37
相关论文
共 122 条
[1]   STATISTICAL MODELING OF DATA ON TEACHING STYLES [J].
AITKIN, M ;
ANDERSON, D ;
HINDE, J .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1981, 144 :419-461
[2]  
AITKIN M, 1985, J ROY STAT SOC B MET, V47, P67
[3]  
Akaike H., 1973, P 2 INT S INFORM, DOI 10.1007/978-1-4612-1694-0
[4]  
Anderson E., 1935, B AM IRIS SOC, V59, P2
[5]   COMPARATIVE-EVALUATION OF 2 SUPERIOR STOPPING RULES FOR HIERARCHICAL CLUSTER-ANALYSIS [J].
ATLAS, RS ;
OVERALL, JE .
PSYCHOMETRIKA, 1994, 59 (04) :581-591
[6]   The multivariate skew-normal distribution [J].
Azzalini, A ;
DallaValle, A .
BIOMETRIKA, 1996, 83 (04) :715-726
[7]  
AZZALINI A, 1985, SCAND J STAT, V12, P171
[8]  
Banerjee A, 2005, J MACH LEARN RES, V6, P1345
[9]  
Basu S., 2002, P 19 INT C MACH LEAR
[10]  
Basu S., 2004, P SIAM INT C DAT MIN