Remote sensing of ocean color: A methodology for dealing with broad spectral bands and significant out-of-band response

被引:77
作者
Gordon, HR
机构
[1] Department of Physics, University of Miami, Coral Gables, FL
来源
APPLIED OPTICS | 1995年 / 34卷 / 36期
关键词
D O I
10.1364/AO.34.008363
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A methodology for delineating the influence of finite spectral bandwidths and significant out-of-band response of sensors for remote sensing of ocean color is developed and applied to the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS). The basis of the method is the application of the sensor's spectral-response functions to the individual components of the top-of-the-atmosphere (TOA) radiance rather than the TOA radiance itself. For engineering purposes, this approach allows one to assess easily (and quantitatively) the potential of a particular sensor design for meeting the system-sensor plus algorithms-performance requirements. In the case of the SeaWiFS, two significant conclusions are reached. First, it is found that the out-of-band effects on the water-leaving radiance component of the TOA radiance are of the order of a few percent compared with a sensor with narrow spectral response. This implies that verification that the SeaWiFS system-sensor plus algorithms-meets the goal of providing the water-leaving radiance in the blue in clear ocean water to within 5% will require measurements of the water-leaving radiance over the entire visible spectrum as opposed to just narrow-band (10-20-nm) measurements in the blue. Second, it is found that the atmospheric correction of the SeaWiFS can be degraded by the influence of water-vapor absorption in the shoulders of the atmospheric-correction bands in the near infrared. This absorption causes an apparent spectral variation of the aerosol component between these two bands that will be uncharacteristic of the actual aerosol present, leading to an error in correction. This effect is dependent on the water-vapor content of the atmosphere. At typical water-vapor concentrations the error is larger for aerosols with a weak spectral variation in reflectance than for those that display a strong spectral variation. If the water-vapor content is known, a simple procedure is provided to remove the degradation of the atmospheric correction. Uncertainty in the water-vapor content will limit the accuracy of the SeaWiFS correction algorithm. (C) 1995 Optical Society of America
引用
收藏
页码:8363 / 8374
页数:12
相关论文
共 20 条
  • [1] SIMULATED EFFECTS OF BAROMETRIC-PRESSURE AND OZONE CONTENT UPON THE ESTIMATE OF MARINE-PHYTOPLANKTON FROM SPACE
    ANDRE, JM
    MOREL, A
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1989, 94 (C1): : 1029 - 1037
  • [2] Barnes R. A., 1994, SEAWIFS TECHNICAL RE, V23
  • [3] Clark DK., 1981, OCEANOGRAPHY SPACE, P227, DOI 10.1007/978-1-4613-3315-9_28
  • [4] MODELING OF THE ATMOSPHERIC EFFECTS AND ITS APPLICATION TO THE REMOTE-SENSING OF OCEAN COLOR
    DESCHAMPS, PY
    HERMAN, M
    TANRE, D
    [J]. APPLIED OPTICS, 1983, 22 (23): : 3751 - 3758
  • [5] ANALYSIS OF THE INFLUENCE OF O-2 A-BAND ABSORPTION ON ATMOSPHERIC CORRECTION OF OCEAN-COLOR IMAGERY
    DING, KY
    GORDON, HR
    [J]. APPLIED OPTICS, 1995, 34 (12): : 2068 - 2080
  • [6] A SEMIANALYTIC RADIANCE MODEL OF OCEAN COLOR
    GORDON, HR
    BROWN, OB
    EVANS, RH
    BROWN, JW
    SMITH, RC
    BAKER, KS
    CLARK, DK
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1988, 93 (D9): : 10909 - 10924
  • [7] SELF-SHADING OF IN-WATER OPTICAL-INSTRUMENTS
    GORDON, HR
    DING, KY
    [J]. LIMNOLOGY AND OCEANOGRAPHY, 1992, 37 (03) : 491 - 500
  • [8] RETRIEVAL OF WATER-LEAVING RADIANCE AND AEROSOL OPTICAL-THICKNESS OVER THE OCEANS WITH SEAWIFS - A PRELIMINARY ALGORITHM
    GORDON, HR
    WANG, MH
    [J]. APPLIED OPTICS, 1994, 33 (03): : 443 - 452
  • [9] CLEAR WATER RADIANCES FOR ATMOSPHERIC CORRECTION OF COASTAL ZONE COLOR SCANNER IMAGERY
    GORDON, HR
    CLARK, DK
    [J]. APPLIED OPTICS, 1981, 20 (24): : 4175 - 4180
  • [10] EXACT RAYLEIGH-SCATTERING CALCULATIONS FOR USE WITH THE NIMBUS-7 COASTAL ZONE COLOR SCANNER
    GORDON, HR
    BROWN, JW
    EVANS, RH
    [J]. APPLIED OPTICS, 1988, 27 (05): : 862 - 871