SELF-ADJOINT EXTENSIONS AND SIGNATURE CHANGE

被引:8
作者
EGUSQUIZA, IL
机构
[1] Department of Theoretical Physics, University of the Basque Country, PK-48080, Bilbao
关键词
D O I
10.1088/0264-9381/12/9/001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the self-adjoint extensions of the spatial part of the D'Alembert operator in a spacetime with two changes of signature. We identify a set of boundary conditions, parametrized by U(2) matrices, which correspond to Dirichlet boundary conditions for the fields, and from which we argue against the suggestion that regions of signature change can isolate singularities.
引用
收藏
页码:L89 / L92
页数:4
相关论文
共 50 条
[31]   Self-adjoint extensions of operators in Quantum Mechanics [J].
Filgueiras, C. ;
Moraes, Fernando .
REVISTA BRASILEIRA DE ENSINO DE FISICA, 2007, 29 (01) :11-13
[32]   DESCRIPTION OF SELF-ADJOINT EXTENSIONS OF FIELD OPERATORS [J].
GACHOK, VP .
DOKLADY AKADEMII NAUK SSSR, 1968, 178 (05) :1033-&
[33]   Self-adjoint extensions for a class of singular operators [J].
AMIROV, Rauf ;
HUSEYNOV, Hidayat Mehmetoglu ;
DURAK, Sevim .
TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (01) :300-304
[34]   Self-Adjoint Extensions with Friedrichs Lower Bound [J].
Matteo Gallone ;
Alessandro Michelangeli .
Complex Analysis and Operator Theory, 2020, 14
[35]   On self-adjoint matrix polynomials with constant signature [J].
Ran, Andre ;
Zizler, Peter .
Linear Algebra and Its Applications, 1997, 259
[36]   On self-adjoint matrix polynomials with constant signature [J].
Ran, A ;
Zizler, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 259 :133-153
[37]   Self-adjoint and Markovian extensions of infinite quantum graphs [J].
Kostenko, Aleksey ;
Mugnolo, Delio ;
Nicolussi, Noema .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (02) :1262-1313
[38]   Fullerenes, zero-modes and self-adjoint extensions [J].
Roy, A. ;
Stone, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (01)
[39]   Self-adjoint extensions of operators and the teaching of quantum mechanics [J].
Bonneau, G ;
Faraut, J ;
Valent, G .
AMERICAN JOURNAL OF PHYSICS, 2001, 69 (03) :322-331
[40]   Quasinormal modes and self-adjoint extensions of the Schrodinger operator [J].
Fabris, Julio C. ;
Richarte, Martin G. ;
Saa, Alberto .
PHYSICAL REVIEW D, 2021, 103 (04)