SELF-ADJOINT EXTENSIONS AND SIGNATURE CHANGE

被引:8
作者
EGUSQUIZA, IL
机构
[1] Department of Theoretical Physics, University of the Basque Country, PK-48080, Bilbao
关键词
D O I
10.1088/0264-9381/12/9/001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the self-adjoint extensions of the spatial part of the D'Alembert operator in a spacetime with two changes of signature. We identify a set of boundary conditions, parametrized by U(2) matrices, which correspond to Dirichlet boundary conditions for the fields, and from which we argue against the suggestion that regions of signature change can isolate singularities.
引用
收藏
页码:L89 / L92
页数:4
相关论文
共 50 条
  • [21] Self-adjoint extensions for the Neumann Laplacian and applications
    Nazarov, S. A.
    Sokolowski, J.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (03) : 879 - 906
  • [22] GENERALIZED SELF-ADJOINT EXTENSIONS OF SYMMETRIC OPERATORS
    TSEKANOVSKII, ER
    DOKLADY AKADEMII NAUK SSSR, 1968, 178 (06): : 1267 - +
  • [23] On Self-Adjoint Extensions and Symmetries in Quantum Mechanics
    Ibort, Alberto
    Lledo, Fernando
    Manuel Perez-Pardo, Juan
    ANNALES HENRI POINCARE, 2015, 16 (10): : 2367 - 2397
  • [24] Self-Adjoint Extensions with Friedrichs Lower Bound
    Gallone, Matteo
    Michelangeli, Alessandro
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (07)
  • [25] Self-adjoint extensions and unitary operators on the boundary
    Paolo Facchi
    Giancarlo Garnero
    Marilena Ligabò
    Letters in Mathematical Physics, 2018, 108 : 195 - 212
  • [26] On the singular continuous spectrum of self-adjoint extensions
    Brasche, J
    Neidhardt, H
    MATHEMATISCHE ZEITSCHRIFT, 1996, 222 (04) : 533 - 542
  • [27] Self-adjoint extensions and unitary operators on the boundary
    Facchi, Paolo
    Garnero, Giancarlo
    Ligabo, Marilena
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (01) : 195 - 212
  • [28] Extensions of self-adjoint operators and their reflexivity defect
    Delai, MB
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 297 (1-3) : 81 - 85
  • [29] Using Self-adjoint Extensions in Shape Optimization
    Laurain, Antoine
    Szulc, Katarzyna
    SYSTEM MODELING AND OPTIMIZATION, 2009, 312 : 331 - +
  • [30] COMMUTING SELF-ADJOINT EXTENSIONS OF UNBOUNDED OPERATORS
    SLINKER, SP
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1978, 27 (04) : 629 - 636