LATERAL INHIBITION AND GRANULE CELL SYNCHRONY IN THE RAT HIPPOCAMPAL DENTATE GYRUS

被引:0
|
作者
SLOVITER, RS
BRISMAN, JL
机构
[1] COLUMBIA UNIV, COLL PHYS & SURG, DEPT PHARMACOL, NEW YORK, NY 10032 USA
[2] COLUMBIA UNIV, COLL PHYS & SURG, DEPT NEUROL, NEW YORK, NY 10032 USA
来源
JOURNAL OF NEUROSCIENCE | 1995年 / 15卷 / 01期
关键词
HIPPOCAMPUS; DENTATE GYRUS; LATERAL INHIBITION; GABA; BICUCULLINE; EPILEPSY;
D O I
暂无
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Studies of patients with temporal lobe epilepsy and of experimental models of this disorder suggest that the hippocampal dentate gyrus may be a common site of seizure onset and propagation. However, the nature of the dentate ''network defect'' that could give rise to spontaneous, intermittent, and synchronous population discharges is poorly understood. We have hypothesized that large expanses of the dentate granule cell layer have an underlying tendency to discharge synchronously in response to afferent excitation, but do not do so normally because vulnerable dentate hilar neurons establish lateral inhibition in the granule cell layer and thereby prevent focal discharges from spreading to surrounding segments. To address this hypothesis, we (1) identified functionally independent segments of the granule cell layer; (2) determined whether discharges in one segment evoke lateral inhibition in surrounding segments; and, (3) determined if disinhibition induces normally independent segments of the granule cell layer to discharge synchronously. Simultaneous extracellular recordings were made from two locations along the longitudinal or transverse axes of the granule cell layer using saline- and bicuculline-filled electrodes that were glued together. Leakage of 10 mM bicuculline from the electrode tip produced no detectable spontaneous activity. However, single perforant path stimuli evoked multiple population spikes at the bicuculline electrode and simultaneous normal responses at the nearby saline electrode. The multiple spikes evoked at the bicuculline electrode did not propagate to, and were not detected by, the adjacent saline electrode, indicating functional separation between neighboring subgroups of granule cells. Paired-pulse stimulation revealed that multiple discharges were not only restricted to one segment of the granule cell layer, but strongly inhibited surrounding segments. This lateral inhibition in surrounding segments often lasted longer than 150 msec. Finally, we evaluated granule cell activity at two normally independent sites within the granule cell layer both before and after disinhibition was induced by high frequency stimulus trains or bicuculline injection. following a 10 sec, 20 Hz perforant path stimulus train, 2 Hz stimulation evoked virtually identical synchronized epileptiform discharges from normally separated sites. Similarly, intrahippocampal or intravenous bicuculline injection produced spontaneous synchronous epileptiform discharges throughout the granule cell layer. These results indicate that lateral or ''surround'' inhibition is an operant physiological mechanism in the normal dentate gyrus and suggest that afferent stimuli to a disinhibited dentate network evoke highly synchronized discharges from large expanses of the granule cell layer that are normally kept functionally separated by GABA-mediated inhibition.
引用
收藏
页码:811 / 820
页数:10
相关论文
共 50 条
  • [31] Spatial learning affects immature granule cell survival in adult rat dentate gyrus
    Ambrogini, P
    Cuppini, R
    Cuppini, C
    Ciaroni, S
    Cecchini, T
    Ferri, P
    Sartini, S
    Del Grande, P
    NEUROSCIENCE LETTERS, 2000, 286 (01) : 21 - 24
  • [33] AN ANALYSIS OF THE INCREASE IN GRANULE CELL EXCITABILITY ACCOMPANYING HABITUATION IN THE DENTATE GYRUS OF THE ANESTHETIZED RAT
    ABRAHAM, WC
    BLISS, TVP
    BRAIN RESEARCH, 1985, 331 (02) : 303 - 313
  • [34] A distinct transcriptional signature of antidepressant response in hippocampal dentate gyrus granule cells
    David P. Herzog
    Diego Pascual Cuadrado
    Giulia Treccani
    Tanja Jene
    Verena Opitz
    Annika Hasch
    Beat Lutz
    Klaus Lieb
    Inge Sillaber
    Michael A. van der Kooij
    Vijay K. Tiwari
    Marianne B. Müller
    Translational Psychiatry, 11
  • [35] A morphologically distinct granule cell type in the dentate gyrus of the red fox correlates with adult hippocampal neurogenesis
    Amrein, Irmgard
    Slomianka, Lutz
    BRAIN RESEARCH, 2010, 1328 : 12 - 24
  • [36] DEVELOPMENT OF ASTROGLIAL CELLS IN THE PROLIFERATIVE MATRICES, THE GRANULE CELL LAYER, AND THE HIPPOCAMPAL FISSURE OF THE HAMSTER DENTATE GYRUS
    SIEVERS, J
    HARTMANN, D
    PEHLEMANN, FW
    BERRY, M
    JOURNAL OF COMPARATIVE NEUROLOGY, 1992, 320 (01) : 1 - 32
  • [37] A distinct transcriptional signature of antidepressant response in hippocampal dentate gyrus granule cells
    Herzog, David P.
    Cuadrado, Diego Pascual
    Treccani, Giulia
    Jene, Tanja
    Opitz, Verena
    Hasch, Annika
    Lutz, Beat
    Lieb, Klaus
    Sillaber, Inge
    Van der Kooij, Michael A.
    Tiwari, Vijay K.
    Mueller, Marianne B.
    TRANSLATIONAL PSYCHIATRY, 2021, 11 (01)
  • [38] Optical recording study of granule cell activities in the hippocampal dentate gyrus of kainate-treated rats
    Otsu, Y
    Maru, E
    Ohata, H
    Takashima, I
    Kajiwara, R
    Iijima, T
    JOURNAL OF NEUROPHYSIOLOGY, 2000, 83 (04) : 2421 - 2430
  • [39] HIPPOCAMPAL DENTATE GRANULE CELL DEGENERATION AFTER ADRENALECTOMY IN THE RAT IS NOT REVERSED BY DEXAMETHASONE
    SLOVITER, RS
    SOLLAS, AL
    NEUBORT, S
    BRAIN RESEARCH, 1995, 682 (1-2) : 227 - 230
  • [40] Potent inhibition of cell proliferation in the hippocampal dentate gyrus of mice by the chemotherapeutic drug thioTEPA
    Mignone, Robert G.
    Weber, E. Todd
    BRAIN RESEARCH, 2006, 1111 : 26 - 29