QUANTITATIVE STABILITY OF VARIATIONAL SYSTEMS II. A FRAMEWORK FOR NONLINEAR CONDITIONING

被引:63
作者
Attouch, Hedy [1 ]
Wets, Roger J-B. [2 ]
机构
[1] Univ Montpellier II, Math, F-34095 Montpellier 5, France
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
quantitative stability; epi-convergence; epi-distance; projection; optimization; variational problems;
D O I
10.1137/0803016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stability results of Lipschitz and Holder type are obtained for the solutions and optimal values of optimization problems when perturbations are measured in terms of the rho-epi-distance.
引用
收藏
页码:359 / 381
页数:23
相关论文
共 53 条
[21]  
FOUGERES A., 1981, SEM AN CONV MONTP PE, V6
[22]  
Gauvin J., 1979, Mathematics of Operations Research, V4, P458, DOI 10.1287/moor.4.4.458
[23]  
Gauvin J., 1990, Annals of Operations Research, V27, P237, DOI 10.1007/BF02055197
[24]   DIRECTIONAL BEHAVIOR OF OPTIMAL-SOLUTIONS IN NONLINEAR MATHEMATICAL-PROGRAMMING [J].
GAUVIN, J ;
JANIN, R .
MATHEMATICS OF OPERATIONS RESEARCH, 1988, 13 (04) :629-649
[25]   LIPSCHITZ R-CONTINUITY OF THE APPROXIMATE SUBDIFFERENTIAL OF A CONVEX FUNCTION [J].
HIRIARTURRUTY, JB .
MATHEMATICA SCANDINAVICA, 1980, 47 (01) :123-134
[26]   POINT-TO-SET MAPS IN MATHEMATICAL PROGRAMMING [J].
HOGAN, WW .
SIAM REVIEW, 1973, 15 (03) :591-603
[28]  
KANIOVSKI Y., 1992, 9220 ILASA
[29]  
KLATTE D., 1986, P 16 C MATH OPT SEL, V64, P50
[30]  
KUMMER B., 1983, P 11 TIMS INT C COP