QUANTITATIVE STABILITY OF VARIATIONAL SYSTEMS II. A FRAMEWORK FOR NONLINEAR CONDITIONING

被引:63
作者
Attouch, Hedy [1 ]
Wets, Roger J-B. [2 ]
机构
[1] Univ Montpellier II, Math, F-34095 Montpellier 5, France
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
quantitative stability; epi-convergence; epi-distance; projection; optimization; variational problems;
D O I
10.1137/0803016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stability results of Lipschitz and Holder type are obtained for the solutions and optimal values of optimization problems when perturbations are measured in terms of the rho-epi-distance.
引用
收藏
页码:359 / 381
页数:23
相关论文
共 53 条
[1]  
Adams R., 1976, SOBOLEV SPACES
[2]   QUANTITATIVE STABILITY OF VARIATIONAL SYSTEMS .1. THE EPIGRAPHICAL DISTANCE [J].
ATTOUCH, H ;
WETS, RJB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 328 (02) :695-729
[3]   THE TOPOLOGY OF THE RHO-HAUSDORFF DISTANCE [J].
ATTOUCH, H ;
LUCCHETTI, R ;
WETS, RJB .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1991, 160 :303-320
[4]   ISOMETRIES FOR THE LEGENDRE-FENCHEL TRANSFORM [J].
ATTOUCH, H ;
WETS, RJB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 296 (01) :33-60
[5]   ANOTHER ISOMETRY FOR THE LEGENDRE-FENCHEL TRANSFORM [J].
ATTOUCH, H ;
WETS, RJB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 131 (02) :404-411
[6]  
ATTOUCH H., 1993, MATH PROGRA IN PRESS
[7]  
Attouch H., 1984, APPL MATH SERIES
[8]  
ATTOUCH H, 1981, NONLINEAR PROGRAMMIN, V4, P367
[9]   STABLE APPROXIMATIONS OF SET-VALUED MAPS [J].
AUBIN, JP ;
WETS, RJB .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1988, 5 (06) :519-535
[10]   LIPSCHITZ BEHAVIOR OF SOLUTIONS TO CONVEX MINIMIZATION PROBLEMS [J].
AUBIN, JP .
MATHEMATICS OF OPERATIONS RESEARCH, 1984, 9 (01) :87-111