THE NOT-A-KNOT PIECEWISE INTERPOLATORY CUBIC POLYNOMIAL

被引:7
作者
BEHFOROOZ, G
机构
[1] Department of Mathematics Utica College, Syracuse University Utica
关键词
D O I
10.1016/0096-3003(92)90096-J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the main idea of the not-a-knot cubic spline of De Boor [8] will be extended to all the interior points (knots) of the spline interval to obtain a piecewise interpolatory cubic polynomial. Instead of the original and conventional not-a-knot cubic spline, to construct this piecewise polynomial we do not need to solve a tridiagonal system of linear equations, and this provides a shortcut which helps us save the time of doing more computations. The order of convergence of this piecewise cubic polynomial is O(h4).
引用
收藏
页码:29 / 35
页数:7
相关论文
共 10 条
[1]   ON THE CONVERGENCE OF SOME CUBIC SPLINE INTERPOLATION SCHEMES [J].
BEATSON, RK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (04) :903-912
[2]   END CONDITIONS FOR CUBIC SPLINE INTERPOLATION DERIVED FROM INTEGRATION [J].
BEHFOROOZ, G .
APPLIED MATHEMATICS AND COMPUTATION, 1989, 29 (03) :231-244
[3]  
Behforooz G. H., 1979, BIT (Nordisk Tidskrift for Informationsbehandling), V19, P19, DOI 10.1007/BF01931217
[4]  
Behforooz G.H., 1980, J COMPUT APPL MATH, V6, P59
[5]   END CONDITIONS FOR CUBIC SPLINE INTERPOLATION [J].
RAMACHANDRAN, MP .
APPLIED MATHEMATICS AND COMPUTATION, 1990, 40 (02) :105-116
[6]  
CHENEY W, 1985, NUMERICAL MATH COMPU, P23405
[7]  
De Boor C, 1966, THESIS U MICHIGAN
[8]  
DEBOOR CR, 1984, CONVERGENCE CUBIC SP
[9]  
KERSHAW D, 1973, J I MATH APPL, V11, P329
[10]   ERROR BOUNDS FOR INTERPOLATING CUBIC SPLINES UNDER VARIOUS END CONDITIONS [J].
LUCAS, TR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (03) :569-584