Toeplitz Matrices Whose Elements Are the Coefficients of Functions with Bounded Boundary Rotation

被引:23
作者
Radhika, V. [1 ]
Sivasubramanian, S. [2 ]
Murugusundaramoorthy, G. [3 ]
Jahangiri, Jay M. [4 ]
机构
[1] Easwari Engn Coll, Dept Math, Madras 600089, Tamil Nadu, India
[2] Anna Univ, Univ Coll Engn Tindivanam, Dept Math, Tindivanam 604001, India
[3] VIT Univ, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[4] Kent State Univ, Dept Math Sci, Burton, OH 44021 USA
关键词
D O I
10.1155/2016/4960704
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R denote the family of functions f(z) = z + Sigma(infinity)(n=2)a(n)z(n) of bounded boundary rotation so that Re(f'(z)) > 0 in the open unit disk U = {z : |z| < 1}. We obtain sharp bounds for Toeplitz determinants whose elements are the coefficients of functions f is an element of R.
引用
收藏
页数:4
相关论文
共 6 条
[1]   ON FUNCTIONS OF BOUNDED BOUNDARY ROTATION .1. [J].
BRANNAN, DA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1969, 16 :339-&
[2]  
Duren P.L., 1983, GRUNDLEHREN MATH WIS, V259
[3]   COEFFICIENT BOUNDS FOR THE INVERSE OF A FUNCTION WITH DERIVATIVE IN P [J].
LIBERA, RJ ;
ZLOTKIEWICZ, EJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (02) :251-257
[5]  
Thomas D. K., 2016, B MALAYSIAN MATH SCI
[6]   Every Matrix is a Product of Toeplitz Matrices [J].
Ye, Ke ;
Lim, Lek-Heng .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (03) :577-598