ON SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY TRANS-SASAKIAN MANIFOLD ADMITTING A SEMI-SYMMETRIC SEMI-METRIC CONNECTION

被引:0
作者
Das, Lovejoy S. [1 ]
Ahmad, Mobin [2 ]
Siddiqi, M. Danish [3 ]
Haseeb, A. [3 ]
机构
[1] Kent State Univ, Dept Math, Tuscarawas Campus, New Philadelphia, OH 44663 USA
[2] Integral Univ, Fac Sci Appl, Dept Math, Kursi Road, Lucknow 226026, Uttar Pradesh, India
[3] Jazan Univ, Fac Sci, Dept Math, Jazan, Saudi Arabia
关键词
semi-invariant submanifolds; nearly trans-Sasakian manifolds; semi-symmetric semi-metric connection; Gauss and Weingarten equations; integrability conditions; distributions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a semi-symmetric semi-metric connection in a nearly trans-Sasakian manifold and we consider semi-invariant submanifolds of a nearly trans-Sasakian manifold endowed with a semi-symmetric semi-metric connection. Moreover, we also obtain integrability conditions of the distributions on semi-invariant submanifolds
引用
收藏
页码:345 / 359
页数:15
相关论文
共 20 条
  • [1] Ahmad M., 2010, B ALLAHABAD MATH SOC, V25, P23
  • [2] Ahmad M., 2010, INT J CONT MATH SCI, V5, P1637
  • [3] Ahmad M, 2010, MAT VESTN, V62, P189
  • [4] Barua B., 1998, AN STIINT U AI I CUZ, V9, P137
  • [5] Bejancu A., 1986, GEOMETRY CR SUBMANIF
  • [6] Bejancu A., 1981, AN ST U AL I CUZA IA, V27, P17
  • [7] Blair D.E., 1976, LECT NOTES MATH, V509
  • [8] On the geometry of partly symmetrical transferences
    Friedmann, A
    Schouten, JA
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1924, 21 : 211 - 223
  • [9] Gherghe C, 2000, DEMONSTR MATH, V33, P151, DOI DOI 10.1515/DEMA-2000-0118
  • [10] Gray A., 1980, ANN MAT PUR APPL, V4, P35, DOI DOI 10.1007/BF01796539