ON THE NUMERICAL-SOLUTION OF THE EULER-LAGRANGE EQUATIONS

被引:13
作者
RABIER, PJ
RHEINBOLDT, WC
机构
关键词
MULTIBODY DYNAMICS; DIFFERENTIAL-ALGEBRAIC SYSTEMS; DIFFERENTIAL EQUATIONS ON MANIFOLDS;
D O I
10.1137/0732013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper presents a new approach to the numerical solution of the Euler-Lagrange equations based upon the reduction of the problem to a second-order ordinary differential equation (ODE) on the constraint manifold. The algorithm guarantees that the constraints are automatically satisfied and requires a minimal number of evaluations of second-order derivative terms. In fact, second-order derivatives are involved only through the second fundamental tenser of the constraint manifold. This tenser may be computed either explicitly when second derivatives are available or via an approximation procedure with excellent accuracy. Examples are given along with comparisons with state-of-the-art software.
引用
收藏
页码:318 / 329
页数:12
相关论文
共 19 条
[1]  
Abraham R., 1988, MANIFOLDS TENSOR ANA
[2]  
ASCHER UM, 1991, UCRLJC107050 LAWR LI
[3]  
BRASEY V, 1991, HALF EXPLICIT RUNGE, V2
[4]  
BRENNAN KE, 1989, NUMERICAL SOLUTION I
[5]  
CHOQUETBRUHAT Y, 1982, ANAL MANIFOLDS PHYSI
[6]  
Hairer E., 1991, SOLVING ORDINARY DIF, DOI [10.1007/978-3-662-09947-6, DOI 10.1007/978-3-662-09947-6]
[7]  
HAIRER E, 1987, SOLVING ORDINARY DIF, V1
[8]  
Haug E.J., 1984, COMPUTER AIDED ANAL, DOI 10.1007/978-3-642-52465-3_20
[9]  
Kreiszig E., 1991, DIFFERENTIAL GEOMETR
[10]  
POTRA FA, 1991, REAL TIME INTEGRATIO, P155