INVARIANCE AND NEURAL NETS

被引:43
作者
BARNARD, E [1 ]
CASASENT, D [1 ]
机构
[1] CARNEGIE MELLON UNIV,DEPT QUIM ANALIT,PITTSBURGH,PA 15213
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1991年 / 2卷 / 05期
关键词
D O I
10.1109/72.134287
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Invariance with respect to certain transformations is one of the main tasks of pattern-recognition systems. We study various techniques for obtaining this invariance with neural net classifiers and identify the invariant-feature technique as the most suitable for current neural classifiers. A new formulation of invariance in terms of constraints on the feature values leads to a general method for transforming any given feature space so that it becomes invariant to specified transformations. A case study using range imagery is used to exemplify these ideas, and good performance is obtained.
引用
收藏
页码:498 / 508
页数:11
相关论文
共 31 条
[1]   IMAGE NORMALIZATION BY COMPLEX MOMENTS [J].
ABUMOSTAFA, YS ;
PSALTIS, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1985, 7 (01) :46-55
[2]  
Amari S., 1968, RAAG MEMOIRS, V4, P553
[3]  
[Anonymous], 1987, LEARNING INTERNAL RE
[4]  
Ballard DH, 1982, COMPUTER VISION
[5]  
BARNARD E, 1990, APPL OPTICS, V29, P2603
[6]  
BARNARD E, 1989, IEEE T SYST MAN CYBE, V19
[7]   A NEURAL NETWORK FOR INVARIANT PATTERN-RECOGNITION [J].
BIENENSTOCK, E ;
VONDERMALSBURG, C .
EUROPHYSICS LETTERS, 1987, 4 (01) :121-126
[8]   EXPERIMENTS ON NEURAL NET RECOGNITION OF SPOKEN AND WRITTEN TEXT [J].
BURR, DJ .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (07) :1162-1168
[9]   COMPUTER GENERATED HOLOGRAMS IN PATTERN-RECOGNITION - A REVIEW [J].
CASASENT, D .
OPTICAL ENGINEERING, 1985, 24 (05) :724-730
[10]   UNIFIED SYNTHETIC DISCRIMINANT FUNCTION COMPUTATIONAL FORMULATION [J].
CASASENT, D .
APPLIED OPTICS, 1984, 23 (10) :1620-1627