On angular measures in Minkowski planes

被引:8
作者
Fankhaenel, Andreas [1 ]
机构
[1] Univ Technol Chemnitz, Fac Math, D-09107 Chemnitz, Germany
来源
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY | 2011年 / 52卷 / 02期
关键词
Angular measure; Birkhoff orthogonality; James orthogonality; Minkowski geometry; Normed plane; Radon curve; Radon plane; Thales' theorem;
D O I
10.1007/s13366-011-0011-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of angular measure in a Minkowski plane and prove that the plane has to be Euclidean if any two James-orthogonal vectors form an angle of value pi/2, but need not be Euclidean if any two Birkhoff orthogonal vectors do so.
引用
收藏
页码:335 / 342
页数:8
相关论文
共 7 条
[1]  
Amir D., 1986, CHARACTERIZATIONS IN
[2]   Erdos distance problems in normed spaces [J].
Brass, P .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1996, 6 (04) :195-214
[3]   Angle measures and bisectors in Minkowski planes [J].
Düvelmeyer, N .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2005, 48 (04) :523-534
[4]  
Fankhanel A., 2009, BEITR ALGEBRA GEOM, V50, P295
[5]  
Martini H., 2006, AEQUATIONES MATH, V72, P110, DOI DOI 10.1007/s00010-006-2825-y
[6]  
Martini H., 2001, EXPO MATH, V19, P97, DOI [DOI 10.1016/S0723-0869(01)80025-6, 10.1016/S0723-0869(01)80025-6]
[7]  
Rota G.-C., 1996, MINKOWSKI GEOMETRY