ON THE MASTER SYMMETRIES AND BI-HAMILTONIAN STRUCTURE OF THE TODA LATTICE

被引:55
作者
FERNANDES, RL [1 ]
机构
[1] INST SUPER TECN,DEPT MATEMAT,P-1000 LISBON,PORTUGAL
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1993年 / 26卷 / 15期
关键词
D O I
10.1088/0305-4470/26/15/028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from a conformal symmetry, higher-order Poisson tensors, deformation relations and master symmetries for the Toda lattice are obtained. A hierarchy of time-dependent symmetries is also constructed. Using reduction, deformation relations previously known to hold up to a certain equivalence relation are shown to be exact.
引用
收藏
页码:3797 / 3803
页数:7
相关论文
共 6 条
[1]  
DAMIANOU P, 1993, SYMMETRIES TODA EQUA
[2]   MASTER SYMMETRIES AND R-MATRICES FOR THE TODA LATTICE [J].
DAMIANOU, PA .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 20 (02) :101-112
[3]   MASTERSYMMETRIES, HIGHER-ORDER TIME-DEPENDENT SYMMETRIES AND CONSERVED-DENSITIES OF NONLINEAR EVOLUTION-EQUATIONS [J].
FUCHSSTEINER, B .
PROGRESS OF THEORETICAL PHYSICS, 1983, 70 (06) :1508-1522
[4]   SIMPLE-MODEL OF INTEGRABLE HAMILTONIAN EQUATION [J].
MAGRI, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (05) :1156-1162
[5]   SOME REMARKS ON THE BI-HAMILTONIAN STRUCTURE OF INTEGRAL AND DISCRETE EVOLUTION-EQUATIONS [J].
MOROSI, C ;
TONDO, G .
INVERSE PROBLEMS, 1990, 6 (04) :557-566
[6]  
Oevel W., 1987, TOPICS SOLITON THEOR, P108