Heterogeneous multimodal biomarkers analysis for Alzheimer's disease via Bayesian network

被引:19
作者
Jin, Yan [1 ]
Su, Yi [2 ]
Zhou, Xiao-Hua [3 ]
Huang, Shuai [1 ]
机构
[1] Univ Washington, Dept Ind Engn, Seattle, WA 98195 USA
[2] Washington Univ, Dept Radiol, St Louis, MO USA
[3] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Alzheimer's disease; Bayesian network; Multimodal biomarkers; Heterogeneous; ADNI;
D O I
10.1186/s13637-016-0046-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
By 2050, it is estimated that the number of worldwide Alzheimer's disease (AD) patients will quadruple from the current number of 36 million, while no proven disease-modifying treatments are available. At present, the underlying disease mechanisms remain under investigation, and recent studies suggest that the disease involves multiple etiological pathways. To better understand the disease and develop treatment strategies, a number of ongoing studies including the Alzheimer's Disease Neuroimaging Initiative (ADNI) enroll many study participants and acquire a large number of biomarkers from various modalities including demographic, genotyping, fluid biomarkers, neuroimaging, neuropsychometric test, and clinical assessments. However, a systematic approach that can integrate all the collected data is lacking. The overarching goal of our study is to use machine learning techniques to understand the relationships among different biomarkers and to establish a system-level model that can better describe the interactions among biomarkers and provide superior diagnostic and prognostic information. In this pilot study, we use Bayesian network (BN) to analyze multimodal data from ADNI, including demographics, volumetric MRI, PET, genotypes, and neuropsychometric measurements and demonstrate our approach to have superior prediction accuracy.
引用
收藏
页数:8
相关论文
共 32 条
[1]   APOE genotype and cognitive decline in a middle-aged cohort [J].
Blair, CK ;
Folsom, AR ;
Knopman, DS ;
Bray, MS ;
Mosley, TH ;
Boerwinkle, E .
NEUROLOGY, 2005, 64 (02) :268-276
[2]   Correlations between FDG PET glucose uptake-MRI gray matter volume scores and apolipoprotein E ε4 gene dose in cognitively normal adults: A cross-validation study using voxel-based multi-modal partial least squares [J].
Chen, Kewei ;
Ayutyanont, Napatkamon ;
Langbaum, Jessica B. S. ;
Fleisher, Adam S. ;
Reschke, Cole ;
Lee, Wendy ;
Liu, Xiaofen ;
Alexander, Gene E. ;
Bandy, Dan ;
Caselli, Richard J. ;
Reiman, Eric M. .
NEUROIMAGE, 2012, 60 (04) :2316-2322
[3]   Memory complaints and APOE-ε4 accelerate cognitive decline in cognitively normal elderly [J].
Dik, MG ;
Jonker, C ;
Comijs, HC ;
Bouter, LM ;
Twisk, JWR ;
van Kamp, GJ ;
Deeg, DJH .
NEUROLOGY, 2001, 57 (12) :2217-2222
[4]   Effect of APOE genotype on amyloid plaque load and gray matter volume in Alzheimer disease [J].
Drzezga, A. ;
Grimmer, T. ;
Henriksen, G. ;
Muehlau, M. ;
Perneczky, R. ;
Miederer, I. ;
Praus, C. ;
Sorg, C. ;
Wohlschlaeger, A. ;
Riemenschneider, M. ;
Wester, H. J. ;
Foerstl, H. ;
Schwaiger, M. ;
Kurz, A. .
NEUROLOGY, 2009, 72 (17) :1487-1494
[5]  
Friedman N., 1996, Machine Learning. Proceedings of the Thirteenth International Conference (ICML '96), P157
[6]   Using Bayesian networks to analyze expression data [J].
Friedman, N ;
Linial, M ;
Nachman, I ;
Pe'er, D .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) :601-620
[7]   PREDICTIVE LEARNING VIA RULE ENSEMBLES [J].
Frieman, Jerome H. ;
Popescu, Bogdan E. .
ANNALS OF APPLIED STATISTICS, 2008, 2 (03) :916-954
[8]  
Hardy John, 2006, Current Alzheimer Research, V3, P71, DOI 10.2174/156720506775697098
[9]   Alzheimer's Disease: The Challenge of the Second Century [J].
Holtzman, David M. ;
Morris, John C. ;
Goate, Alison M. .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (77)
[10]   Alzheimer's Disease, Cerebrovascular Disease, and the β-amyloid Cascade [J].
Honjo, Kie ;
Black, Sandra E. ;
Verhoeff, Nicolaas P. L. G. .
CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES, 2012, 39 (06) :712-728