ESTIMATING A DENSITY AND ITS DERIVATIVES VIA THE MINIMUM DISTANCE METHOD

被引:3
作者
GAJEK, L
机构
关键词
D O I
10.1007/BF00318908
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:601 / 617
页数:17
相关论文
共 17 条
[1]   ON ESTIMATING A DENSITY USING HELLINGER DISTANCE AND SOME OTHER STRANGE FACTS [J].
BIRGE, L .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 71 (02) :271-291
[2]  
CHEN J, EFFECT NONNORMALIZAT
[3]  
DEVROYE L, 1985, NONPARAMETRIC DENSIT
[4]   ON IMPROVING DENSITY ESTIMATORS WHICH ARE NOT BONA-FIDE FUNCTIONS [J].
GAJEK, L .
ANNALS OF STATISTICS, 1986, 14 (04) :1612-1618
[5]   ESTIMATION OF DISTRIBUTION DENSITY BELONGING TO A CLASS OF ENTIRE-FUNCTIONS [J].
IBRAGIMOV, IA ;
KHASMINSKII, RZ .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1983, 27 (03) :551-562
[6]  
KHASMINSKII RZ, 1978, THEOR PROBAB APPL+, V23, P794
[7]   APPROXIMATION OF PARTIAL SUMS OF INDEPENDENT RV-S, AND SAMPLE DFI [J].
KOMLOS, J ;
MAJOR, P ;
TUSNADY, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 32 (1-2) :111-131
[8]  
REISS RD, 1986, SANKHYA SER A, V48, P59
[9]   SHARP RATES OF CONVERGENCE OF MAXIMUM-LIKELIHOOD ESTIMATORS IN NONPARAMETRIC MODELS [J].
REISS, RD .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 65 (03) :473-482
[10]   WEAK AND STRONG UNIFORM CONSISTENCY OF KERNEL ESTIMATE OF A DENSITY AND ITS DERIVATIVES [J].
SILVERMAN, BW .
ANNALS OF STATISTICS, 1978, 6 (01) :177-184