ON CHEBYSHEV FUNCTIONAL AND OSTROWSKI-GRUS TYPE INEQUALITIES FOR TWO COORDINATES

被引:0
|
作者
Rehman, Atiq Ur [1 ]
Farid, Ghulam [1 ]
机构
[1] COMSATS Inst Informat Technol, Attock Campus, Attock, Pakistan
来源
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS | 2016年 / 12卷 / 02期
关键词
Chebyshev inequality; Chebyshev functional; Gruss inequality; Ostrowski-Gruss inequality; mean value theorems;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct Chebyshev functional and Gruss inequality on two coordinates. Also we establish Ostrowski-Gruss type inequality on two coordinates. Related mean value theorems of Lagrange and Cauchy type are also given.
引用
收藏
页码:180 / 187
页数:8
相关论文
共 50 条
  • [41] New extensions of Chebyshev-Polya-Szego type inequalities via conformable integrals
    Deniz, Erhan
    Akdemir, Ahmet Ocak
    Yuksel, Ebru
    AIMS MATHEMATICS, 2020, 5 (02): : 956 - 965
  • [42] Approximating the Riemann-Stieltjes integral via a Chebyshev type functional
    Dragomir, S. S.
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2014, 18 (02): : 239 - 259
  • [43] INEQUALITIES OF CHEBYSHEV-POLYA-SZEGO TYPE VIA GENERALIZED PROPORTIONAL FRACTIONAL INTEGRAL OPERATORS
    Butt, Saad Ihsan
    Akdemir, Ahmet Ocak
    Ekinci, Alper
    Nadeem, Muhammad
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (02) : 717 - 732
  • [44] A LINEAR CONSTRUCTIVE APPROXIMATION FOR INTEGRABLE FUNCTIONS AND A PARAMETRIC QUADRATURE MODEL BASED ON A GENERALIZATION OF OSTROWSKI-GRUSS TYPE INEQUALITIES
    Masjed-Jamei, Mohammad
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2011, 38 : 218 - 232
  • [45] NEWOSTROWSKI AND OSTROWSKI- GRUSS TYPE INEQUALITIES FOR DOUBLE INTEGRALS ON TIME SCALES INVOLVING A COMBINATION OF Delta-INTEGRALMEANS
    Kermausuor, Seth
    Nwaeze, Eze Raymond
    TAMKANG JOURNAL OF MATHEMATICS, 2018, 49 (04): : 277 - 289
  • [46] New refinements of Chebyshev-Polya-Szego-type inequalities via generalized fractional integral operators
    Butt, Saad Ihsan
    Akdemir, Ahmet Ocak
    Bhatti, Muhammad Yousaf
    Nadeem, Muhammad
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [47] Generalized k-Fractional Chebyshev-Type Inequalities via Mittag-Leffler Functions
    Zhang, Zhiqiang
    Farid, Ghulam
    Mehmood, Sajid
    Jung, Chahn-Yong
    Yan, Tao
    AXIOMS, 2022, 11 (02)
  • [48] Refinements of Pólya-SzegŐ and Chebyshev type inequalities via different fractional integral operators
    Ahmad, Ayyaz
    Anwar, Matloob
    HELIYON, 2024, 10 (15)
  • [49] New refinements of Chebyshev–Pólya–Szegö-type inequalities via generalized fractional integral operators
    Saad Ihsan Butt
    Ahmet Ocak Akdemir
    Muhammad Yousaf Bhatti
    Muhammad Nadeem
    Journal of Inequalities and Applications, 2020
  • [50] On some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities
    Vivas-Cortez, Miguel
    Mohammed, Pshtiwan O.
    Hamed, Y. S.
    Kashuri, Artion
    Hernandez, Jorge E.
    Macias-Diaz, Jorge E.
    AIMS MATHEMATICS, 2022, 7 (06): : 10256 - 10275