Total Bondage Number of a Graph

被引:0
|
作者
Sridharan, N. [1 ]
Elias, M. [2 ]
Subramanian, V. [3 ]
机构
[1] Alagappa Univ, Dept Math, Karaikkudi 630003, Tamil Nadu, India
[2] B U E T, Dept Math, Dhaka 1000, Bangladesh
[3] A P S A Coll, Dept Math, Tiruppatur 630211, India
关键词
Total domination number; bondage number;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set D of a vertices in a graph G = (V, E) is said to be a total dominating set of G if every vertex in V is adjacent to some vertex in D. The total domination number gamma(t)(G) is the minimum cardinality of a total dominating set. If gamma(t)(G) not equal |V (G)|, the minimum cardinality of a set E-0 subset of E(G), such that G- E-0 contains no isolated vertices and gamma(t)(GE(0)) > gamma(t)(G), is called the total bondage number of G. In this paper, we improve the earlier known upper bounds for the total bondage number of a graph.
引用
收藏
页码:203 / 209
页数:7
相关论文
共 50 条
  • [41] The total {k}-domatic number of a graph
    S. M. Sheikholeslami
    L. Volkmann
    Journal of Combinatorial Optimization, 2012, 23 : 252 - 260
  • [42] TOTAL DOMINATOR CHROMATIC NUMBER OF A GRAPH
    Kazemi, Adel P.
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (02) : 57 - 68
  • [43] On the total restrained domination number of a graph
    Cyman, Joanna
    Raczek, Joanna
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 36 : 91 - 100
  • [44] ON TOTAL CHROMATIC NUMBER OF OUTERPLANAR GRAPH
    ZHANG, ZF
    ZHANG, JX
    WANG, JF
    KEXUE TONGBAO, 1987, 32 (17): : 1223 - 1223
  • [45] Total Roman domatic number of a graph
    Amjadi, J.
    Nazari-Moghaddam, S.
    Sheikholeslami, S. M.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (06)
  • [46] Signed total domination number of a graph
    Zelinka, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (02) : 225 - 229
  • [47] The total edge Steiner number of a graph
    John, J.
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (01): : 78 - 87
  • [48] The total global domination number of a graph
    Kulli, VR
    Janakiram, B
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1996, 27 (06): : 537 - 542
  • [49] On the signed total domatic number of a graph
    Henning, MA
    ARS COMBINATORIA, 2006, 79 : 277 - 288
  • [50] The total {k}-domatic number of a graph
    Sheikholeslami, S. M.
    Volkmann, L.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 23 (02) : 252 - 260