Total Bondage Number of a Graph

被引:0
|
作者
Sridharan, N. [1 ]
Elias, M. [2 ]
Subramanian, V. [3 ]
机构
[1] Alagappa Univ, Dept Math, Karaikkudi 630003, Tamil Nadu, India
[2] B U E T, Dept Math, Dhaka 1000, Bangladesh
[3] A P S A Coll, Dept Math, Tiruppatur 630211, India
关键词
Total domination number; bondage number;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set D of a vertices in a graph G = (V, E) is said to be a total dominating set of G if every vertex in V is adjacent to some vertex in D. The total domination number gamma(t)(G) is the minimum cardinality of a total dominating set. If gamma(t)(G) not equal |V (G)|, the minimum cardinality of a set E-0 subset of E(G), such that G- E-0 contains no isolated vertices and gamma(t)(GE(0)) > gamma(t)(G), is called the total bondage number of G. In this paper, we improve the earlier known upper bounds for the total bondage number of a graph.
引用
收藏
页码:203 / 209
页数:7
相关论文
共 50 条
  • [21] ON THE ROMAN k-BONDAGE NUMBER OF A GRAPH
    Dehgardi, N.
    Sheikholeslami, S. M.
    Volkmann, L.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2011, 8 (02) : 169 - 180
  • [22] A bound on the size of a graph with given order and bondage number
    Hartnell, BL
    Rall, DF
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 409 - 413
  • [23] Quasi-total Roman bondage number in graphs
    Jiang, Huiqin
    Shao, Zehui
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 221 - 228
  • [24] Upper bounds on the bondage number of the strong product of a graph and a tree
    Zhao, Weisheng
    Zhang, Heping
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (03) : 511 - 527
  • [25] On the domination number of a graph and its total graph
    Murugan, E.
    Joseph, J. Paulraj
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (05)
  • [26] The total Steiner number of a graph
    John, J.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (03)
  • [27] The Total Detour Number of a Graph
    John, J.
    Arianayagam, N.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2014, 17 (04): : 337 - 350
  • [28] On the total monophonic number of a graph
    Arumugam, S.
    Santhakumaran, A. P.
    Titus, P.
    Ganesamoorthy, K.
    Murugan, M.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023, 8 (03) : 483 - 489
  • [29] The Total Traceable Number of a Graph
    Okamoto, Futaba
    Zhang, Ping
    UTILITAS MATHEMATICA, 2011, 85 : 13 - 31
  • [30] THE TOTAL INTERVAL NUMBER OF A GRAPH
    ANDREAE, T
    AIGNER, M
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (01) : 7 - 21