Total Bondage Number of a Graph

被引:0
|
作者
Sridharan, N. [1 ]
Elias, M. [2 ]
Subramanian, V. [3 ]
机构
[1] Alagappa Univ, Dept Math, Karaikkudi 630003, Tamil Nadu, India
[2] B U E T, Dept Math, Dhaka 1000, Bangladesh
[3] A P S A Coll, Dept Math, Tiruppatur 630211, India
关键词
Total domination number; bondage number;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set D of a vertices in a graph G = (V, E) is said to be a total dominating set of G if every vertex in V is adjacent to some vertex in D. The total domination number gamma(t)(G) is the minimum cardinality of a total dominating set. If gamma(t)(G) not equal |V (G)|, the minimum cardinality of a set E-0 subset of E(G), such that G- E-0 contains no isolated vertices and gamma(t)(GE(0)) > gamma(t)(G), is called the total bondage number of G. In this paper, we improve the earlier known upper bounds for the total bondage number of a graph.
引用
收藏
页码:203 / 209
页数:7
相关论文
共 50 条
  • [1] THE BONDAGE NUMBER OF A GRAPH
    FINK, JF
    JACOBSON, MS
    KINCH, LF
    ROBERTS, J
    DISCRETE MATHEMATICS, 1990, 86 (1-3) : 47 - 57
  • [2] On the bondage number of a graph
    Wang, YL
    DISCRETE MATHEMATICS, 1996, 159 (1-3) : 291 - 294
  • [3] A Note on the Bondage Number of a Graph
    李育强
    数学季刊, 1994, (04) : 1 - 4
  • [4] Restrained bondage number of a graph
    Kala, R.
    Vasantha, T. R. Nirmala
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2009, 12 (03): : 373 - 380
  • [5] Independent bondage number of a graph
    Priddy, Bruce
    Wang, Haiying
    Wei, Bing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 37 (02) : 702 - 712
  • [6] Independent bondage number of a graph
    Bruce Priddy
    Haiying Wang
    Bing Wei
    Journal of Combinatorial Optimization, 2019, 37 : 702 - 712
  • [7] Efficient bondage number of a graph
    Kulli, VR
    Soner, ND
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1996, 19 (9-10): : 197 - 202
  • [8] BOUNDS ON THE BONDAGE NUMBER OF A GRAPH
    HARTNELL, BL
    RALL, DF
    DISCRETE MATHEMATICS, 1994, 128 (1-3) : 173 - 177
  • [9] ON THE ROMAN BONDAGE NUMBER OF A GRAPH
    Bahremandpour, A.
    Hu, Fu-Tao
    Sheikholeslami, S. M.
    Xu, Jun-Ming
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2013, 5 (01)
  • [10] The Disjunctive Bondage Number and the Disjunctive Total Bondage Number of Graphs
    Yi, Eunjeong
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, (COCOA 2015), 2015, 9486 : 660 - 675