LINEAR REPRESENTATION OF M-ESTIMATES IN LINEAR-MODELS

被引:28
作者
RAO, CR [1 ]
ZHAO, LC [1 ]
机构
[1] PENN STATE UNIV,CTR MULTIVARIATE ANAL,UNIV PK,PA 16802
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 1992年 / 20卷 / 04期
关键词
BAHADUR REPRESENTATION; LAD ESTIMATE; LINEAR REGRESSION MODEL; M-ESTIMATE;
D O I
10.2307/3315607
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the linear regression model, y(i) = x(i)(T)beta0 + e(i), i = 1, ..., n, and an M-estimate beta of beta0 obtained by minimizing SIGMArho(y(i) - x(i)(T)beta), where rho is a convex function. Let S(n) = SIGMAx(i)x(i)T and r(n) = S(n)1/2(beta - beta0) - S(n)-1/2 SIGMAx(i)h(e(i)), where, with a suitable choice of h(.), the expression SIGMAx(i)h(e(i)) provides a linear representation of beta. Bahadur (1966) obtained the order of r(n) as n --> infinity when beta0 is a one-dimensional location parameter representing the median, and Babu (1989) proved a similar result for the general regression parameter estimated by the LAD (least absolute deviations) method. We obtain the stochastic order of r(n) as n --> infinity for a general M-estimate as defined above, which agrees with the results of Bahadur and Babu in the special cases considered by them.
引用
收藏
页码:359 / 368
页数:10
相关论文
共 8 条
[1]   STRONG REPRESENTATIONS FOR LAD ESTIMATORS IN LINEAR-MODELS [J].
BABU, GJ .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 83 (04) :547-558
[2]   A NOTE ON QUANTILES IN LARGE SAMPLES [J].
BAHADUR, RR .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (03) :577-&
[3]  
BAI ZD, 1991, STATIST SINICA, V2, P237
[4]   PROBABILITY INEQUALITIES FOR SUMS OF INDEPENDENT RANDOM-VARIABLES [J].
FUK, DK ;
NAGAEV, SV .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1971, 16 (04) :643-660
[5]  
Huber PJ., 1981, ROBUST STATISTICS
[6]  
Serfling RJ., 1980, APPROXIMATION THEORE, DOI [10.1002/9780470316481, DOI 10.1002/9780470316481]
[7]   STRONG CONSISTENCY AND EXPONENTIAL RATE OF THE MINIMUM L1-NORM ESTIMATES IN LINEAR-REGRESSION MODELS [J].
WU, YH .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1988, 6 (03) :285-295
[8]  
WU YH, 1988, THESIS U SCI TECHNOL