WEIGHT DECAY AND RESOLUTION EFFECTS IN FEEDFORWARD ARTIFICIAL NEURAL NETWORKS

被引:10
作者
MUNDIE, DB
MASSENGILL, LW
机构
[1] Department of Electrical Engineering, Vanderbilt University, Nashville
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1991年 / 2卷 / 01期
关键词
D O I
10.1109/72.80308
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This letter presents results from a preliminary study on the effects of weight decay and resolution on the performance of typical three-layer, feedforward neural networks. Two types of decay are investigated, unilateral decay toward the most negative weight (unipolar) and bilateral decay toward the median or zero weight value (bipolar), and compared with Gaussian weight perturbations. This analysis is pertinent to the area of VLSI-based network implementations with analog weight storage. The results show that, if weight decay is unavoidable, bipolar decay achieves an order-of-magnitude better performance than unipolar, and that the weight resolution required in actual implementations of feedforward, connectionist hardware is higher than predicted by computer simulations of network responses to random or Gaussian weight perturbations.
引用
收藏
页码:168 / 170
页数:3
相关论文
共 11 条
[1]   A 20-V 4-QUADRANT CMOS ANALOG MULTIPLIER [J].
BABANEZHAD, JN ;
TEMES, GC .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1985, 20 (06) :1158-1168
[2]  
HOLLER M, 1989, JUN P INT JOINT C NE, P191
[3]   PROGRAMMABLE ANALOG VECTOR MATRIX MULTIPLIERS [J].
KUB, FJ ;
MOON, KK ;
MACK, IA ;
LONG, FM .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1990, 25 (01) :207-214
[4]  
MASSENGILL LW, 1990, P IEEE CUSTOM INTEGR
[5]   A +/-5-V CMOS ANALOG MULTIPLIER [J].
QIN, SC ;
GEIGER, RL .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1987, 22 (06) :1143-1147
[6]  
SAGE JP, 1986 AIP C P, P381
[7]  
SCHWARTZ DB, 1988, P IEEE CUSTOM INTEGR
[8]  
Sejnowski T. J., 1987, Complex Systems, V1, P145
[9]   A 4-QUADRANT NMOS ANALOG MULTIPLIER [J].
SOO, DC ;
MEYER, RG .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1982, 17 (06) :1174-1178
[10]  
Stevenson M, 1990, IEEE Trans Neural Netw, V1, P71, DOI 10.1109/72.80206