CONSTRAINED DYNAMICS AND EXTERIOR DIFFERENTIAL-SYSTEMS

被引:5
作者
HARTLEY, D
TUCKER, RW
TUCKEY, PA
机构
[1] School of Physics and Materials, University of Lancaster, Lancaster
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 22期
关键词
D O I
10.1088/0305-4470/24/22/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Dirac analysis of constrained Hamiltonian mechanics is one of the conventional precursors to the quantization of classical systems. In this paper the analysis is reformulated in the language of exterior differential systems, starting from the Lagrangian, moving through the generation of primary and secondary constraints and leading to the construction of symmetry generators for gauge symmetries. This reformulation extends the procedure to non-coordinate systems. A computer algebra implementation of the procedure in REDUCE is also described.
引用
收藏
页码:5253 / 5265
页数:13
相关论文
共 17 条
[1]   RELATIVISTIC ELASTICA [J].
DERELI, T ;
HARTLEY, DH ;
ONDER, M ;
TUCKER, RW .
PHYSICS LETTERS B, 1990, 252 (04) :601-604
[2]  
Dirac P. A. M., 1964, LECT QUANTUM MECH
[3]   GENERALIZED HAMILTONIAN DYNAMICS [J].
DIRAC, PAM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1950, 2 (02) :129-148
[4]   EXISTENCE THEOREM FOR GAUGE SYMMETRIES IN HAMILTONIAN CONSTRAINED SYSTEMS [J].
GOMIS, J ;
HENNEAUX, M ;
PONS, JM .
CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (06) :1089-1096
[5]   QUANTIZATION OF A HIGHER-ORDER DERIVATIVE SPINNING PARTICLE [J].
GOMIS, J ;
PARIS, J ;
ROCA, J .
CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (06) :1053-1060
[6]  
Goursat E., 1959, COURSE MATH ANAL 2, VII
[7]   GAUGE GENERATORS, DIRAC CONJECTURE, AND DEGREES OF FREEDOM FOR CONSTRAINED SYSTEMS [J].
GRACIA, X ;
PONS, JM .
ANNALS OF PHYSICS, 1988, 187 (02) :355-368
[8]  
Griffiths P. A, 1983, EXTERIOR DIFFERENTIA
[9]  
HARTLEY DH, 1991, IN PRESS J SYMB COMP
[10]  
HARTLEY DH, 1990, LMS LECTURE NOTE SER, V150