THE DISTRIBUTION OF A RANDOM SUM OF EXPONENTIALS WITH AN APPLICATION TO A TRAFFIC PROBLEM

被引:0
作者
Recker, Frank [1 ]
机构
[1] Univ Hagen, Dept Math, D-58084 Hagen, Germany
关键词
Poisson process; stopping time; queuing theory; treffic problems;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a random sum of exponentially distributed random variables The stopping time is defined to be the first realization, which is greater or equal a given constant. We will derive an expression for the distribution function of this sum. This has applications in determining the waiting time for a large gap in a Poisson process. A.s an example, we will give a traffic problem, where such a waiting time occurs.
引用
收藏
页码:142 / 149
页数:8
相关论文
共 4 条
[1]  
Asmussen S., 1987, APPL PROBABILITY QUE
[2]  
Grycko E., 1998, COMMUN STAT STOCHAST, V14, P571
[3]  
Meyn SP, 1993, COMMUNICATIONS CONTR
[4]  
Recker F., 2005, ASYMPTOTICAL QUEUE L