Positivity of the Jacobi-Cherednik intertwining operator and its dual

被引:31
|
作者
Gallardo, Leonard [1 ]
Trimeche, Khalifa [2 ]
机构
[1] Univ Tours, CNRS, Lab Math & Phys Theor, UMR 6083, Campus Grandmont, F-37200 Tours, France
[2] Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
关键词
Jacobi-Cherednik operator; intertwining operator; Laplace formula for the eigenfunctions; positivity of the intertwining kernel; intertwining dual operator;
D O I
10.1515/APAM.2010.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of the differential-difference Jacobi-Cherednik operator defined for f is an element of C-1(R) by T-(k,T- k') f(x) = f'(x) + (k coth(x) + k' tanh (x))(f(x) - f(-x)) - (k + k') f(-x), where k > 0 and k' >= 0 are two parameters, and to the positivity of the operator which intertwines T-(k,T- (k')) and the derivative operator d/dx.
引用
收藏
页码:163 / 194
页数:32
相关论文
共 5 条
  • [1] Singularities and analytic continuation of the Dunkl and the Jacobi-Cherednik intertwining operators and their duals
    Gallardo, Leonard
    Trimeche, Khalifa
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (01) : 70 - 83
  • [2] The heat semigroup associated with the Jacobi-Cherednik operator and its applications
    Poria, Anirudha
    Radha, Ramakrishnan
    APPLICABLE ANALYSIS, 2024,
  • [3] Spectral theorems associated with the Jacobi-Cherednik operator
    Mejjaoli, Hatem
    BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (03): : 416 - 439
  • [4] Hardy and Cowling-Price theorems associated with the Jacobi-Cherednik operator
    Chabeh, W.
    Mourou, M. A.
    Rebhi, S.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (05): : 602 - 613
  • [5] Inversion of Weinstein intertwining operator and its dual using Weinstein wavelets
    Gasmi, Abdessalem
    Ben Mohamed, Hassen
    Bettaibi, Neji
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (01): : 289 - 307