Positivity of the Jacobi-Cherednik intertwining operator and its dual

被引:31
作者
Gallardo, Leonard [1 ]
Trimeche, Khalifa [2 ]
机构
[1] Univ Tours, CNRS, Lab Math & Phys Theor, UMR 6083, Campus Grandmont, F-37200 Tours, France
[2] Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
关键词
Jacobi-Cherednik operator; intertwining operator; Laplace formula for the eigenfunctions; positivity of the intertwining kernel; intertwining dual operator;
D O I
10.1515/APAM.2010.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of the differential-difference Jacobi-Cherednik operator defined for f is an element of C-1(R) by T-(k,T- k') f(x) = f'(x) + (k coth(x) + k' tanh (x))(f(x) - f(-x)) - (k + k') f(-x), where k > 0 and k' >= 0 are two parameters, and to the positivity of the operator which intertwines T-(k,T- (k')) and the derivative operator d/dx.
引用
收藏
页码:163 / 194
页数:32
相关论文
共 16 条
[1]   A UNIFICATION OF KNIZHNIK-ZAMOLODCHIKOV AND DUNKL OPERATORS VIA AFFINE HECKE ALGEBRAS [J].
CHEREDNIK, I .
INVENTIONES MATHEMATICAE, 1991, 106 (02) :411-431
[2]   POSITIVITY OF THE INTERTWINING OPERATOR AND HARMONIC ANALYSIS ASSOCIATED WITH THE JACOBI-DUNKL OPERATOR ON R [J].
Chouchane, F. ;
Mili, M. ;
Trimeche, K. .
ANALYSIS AND APPLICATIONS, 2003, 1 (04) :387-412
[3]   INTEGRAL-KERNELS WITH REFLECTION GROUP INVARIANCE [J].
DUNKL, CF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (06) :1213-1227
[4]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA
[5]  
Gradshteyn I. S., 2014, TABLE INTEGRALS SERI
[6]  
HECKMAN GJ, 1987, COMPOS MATH, V64, P329
[7]  
Heckmann G. J., 1994, HARMONIC ANAL SPECIA
[8]   NEW PROOF OF A PALEY-WIENER TYPE THEOREM FOR JACOBI TRANSFORM [J].
KOORNWINDER, T .
ARKIV FOR MATEMATIK, 1975, 13 (01) :145-159
[9]  
Koornwinder T.H., 1984, SPECIAL FUNCTIONS GR
[10]   TRANSMUTATION OPERATORS AND PALEY-WIENER THEOREM ASSOCIATED WITH A SINGULAR DIFFERENTIAL-DIFFERENCE OPERATOR ON THE REAL LINE [J].
Mourou, Mohamed A. ;
Trimeche, Khalifa .
ANALYSIS AND APPLICATIONS, 2003, 1 (01) :43-70