Trigonometric Solutions of Nonlinear First-Order Ordinary Differential Equations over a Banach Algebra

被引:0
作者
Derevenskii, V. P. [1 ]
机构
[1] Kazan State Architecture & Bldg Univ, Ul Zelyonaya 1, Kazan 420043, Russia
关键词
differential equations; matrices; Lie algebras;
D O I
10.3103/S1066369X11090040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we continue the study initiated in the recent paper (see Russian Mathematics (Iz. VUZ) 50 (8), 5-17 (2006)). We determine differentiation formulas for basic trigonometric functions and describe classes of nonlinear first-order ordinary differential equations (ODE.1) over a finite-dimensional Banach algebra whose solutions are the mentioned functions.
引用
收藏
页码:24 / 36
页数:13
相关论文
共 10 条
[1]  
Arnol'd V.I., 1971, ORDINARY DIFFERENTIA
[2]  
Derevenskii V. P., 2006, RUSS MATH, V50, p[7, 5]
[3]  
DEREVENSKII VP, 1987, IZV VUZ MAT+, P33
[4]  
Eisenhart L.P., 1933, CONTINUOUS GROUPS TR
[5]  
Jacobson N., 1962, LIE ALGEBRAS
[6]  
JACOBSON N, 1964, LIE ALGEBRAS
[7]  
Krein S. G., 1972, FUNCTIONAL ANAL SER
[9]   EXPONENTIAL OPERATORS AND PARAMETER DIFFERENTIATION IN QUANTUM PHYSICS [J].
WILCOX, RM .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (04) :962-&
[10]  
Zaitsev V.F., 2001, HDB ORDINARY DIFFERE