MARTINGALE AND STATIONARY SOLUTIONS FOR STOCHASTIC NAVIER-STOKES EQUATIONS

被引:460
作者
FLANDOLI, F [1 ]
GATAREK, D [1 ]
机构
[1] POLISH ACAD SCI,SYST RES INST,PL-01447 WARSAW,POLAND
关键词
D O I
10.1007/BF01192467
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the existence of martingale solutions and of stationary solutions of stochastic Navier-Stokes equations under very general hypotheses on the diffusion term. The stationary martingale solutions yield the existence of invariant measures, when the transition semigroup is well defined. The results are obtained by a new method of compactness.
引用
收藏
页码:367 / 391
页数:25
相关论文
共 25 条
[1]   GLOBAL FLOWS WITH INVARIANT (GIBBS) MEASURES FOR EULER AND NAVIER-STOKES 2-DIMENSIONAL FLUIDS [J].
ALBEVERIO, S ;
CRUZEIRO, AB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 129 (03) :431-444
[2]  
Bensoussan A., 1973, J FUNCT ANAL, V13, P195, DOI [10.1016/0022-1236(73)90045-1, DOI 10.1016/0022-1236(73)90045-1]
[3]   STOCHASTIC NAVIER-STOKES EQUATIONS WITH MULTIPLICATIVE NOISE [J].
BRZEZNIAK, Z ;
CAPINSKI, M ;
FLANDOLI, F .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1992, 10 (05) :523-532
[4]  
BRZEZNIAK Z., 1991, MATH MOD METH APPL S, V1, P41
[5]   NAVIER-STOKES EQUATIONS WITH MULTIPLICATIVE NOISE [J].
CAPINSKI, M ;
CUTLAND, NJ .
NONLINEARITY, 1993, 6 (01) :71-78
[6]  
CAPINSKI M, 1993, U IAGEL ACTA MATH, V30, P219
[7]  
CAPINSKI M, IN PRESS J FUNCT ANA
[8]  
CLOUET JF, IN PRESS STOCH ANAL
[9]  
CRUZEIRO AB, 1989, EXPO MATH, V7, P73
[10]  
DAPRATO G, 1993, STOCHASTIC BURGERS E