EVOLUTION EQUATION OF OPTICAL SOLITONS IN FEMTOSECOND REGIME

被引:0
|
作者
GUO, Q
ZEOU, GS
LIN, WG
LIU, SH
LIAO, CJ
JIN, HC
机构
[1] SHANXI UNIV,DEPT PHYS,TAIYUAN 030006,PEOPLES R CHINA
[2] UNIV ELECTR SCI & TECHNOL CHINA,CHENGDU 610054,PEOPLES R CHINA
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY | 1991年 / 34卷 / 11期
关键词
NONLINEAR EVOLUTION EQUATION; OPTICAL SOLITON; METHOD OF MULTISCALE SINGULAR PERTURBATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A modified nonlinear Schrodinger equation (MNLSE), which is defined as the equation obtained by putting some higher-order terms (the higher-order dispersion and nonlinearity) into a nonlinear Schrodinger equation (NLSE), has been derived from the Maxwell equations in a nonlinear medium with the derivative-expansion procedure in the method of multi-scale singular perturbation. Meanwhile its two equivalent expressions are given. First, the first fourth-order perturbed equations of the Maxwell equations in a source-free nonlinear medium waveguide are obtained. Then, in the special case of the monomode waveguide, the third-order perturbed equation solution is the NLSE, and the fourth-order one is MNLSE. Careful investigation shows that the MNLSE obtained with the reductive perturbation technique (Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron, QE-23(1987), 510) should be corrected.
引用
收藏
页码:1365 / 1377
页数:13
相关论文
共 50 条
  • [1] EVOLUTION EQUATION OF OPTICAL SOLITONS IN FEMTOSECOND REGIME
    郭旗
    周国生
    林为干
    刘颂豪
    廖常俊
    金怀诚
    ScienceinChina,SerA., 1991, Ser.A.1991 (11) : 1365 - 1377
  • [2] EVOLUTION EQUATION OF OPTICAL SOLITONS IN FEMTOSECOND REGIME
    郭旗
    周国生
    林为干
    刘颂豪
    廖常俊
    金怀诚
    Science China Mathematics, 1991, (11) : 1365 - 1377
  • [3] Optical Solitons of Nonlinear Schrodinger Equation with Anomalous Dispersion Regime
    Ala, V.
    Demirbilek, U.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (07) : 2551 - 2556
  • [4] Symmetric and asymmetric optical multipeak solitons on a continuous wave background in the femtosecond regime
    Liu, Chong
    Yang, Zhan-Ying
    Zhao, Li-Chen
    Duan, Liang
    Yang, Guangye
    Yang, Wen-Li
    PHYSICAL REVIEW E, 2016, 94 (04)
  • [5] Optical Solitons of Nonlinear Schrödinger Equation with Anomalous Dispersion Regime
    V. Ala
    U. Demirbilek
    Lobachevskii Journal of Mathematics, 2023, 44 : 2551 - 2556
  • [7] Femtosecond Maxwellian solitons. II. Verification of a model of the nonlinear Schroedinger equation in the theory of optical solitons
    Serkin, V. N.
    Schmidt, E. M.
    Belyaeva, T. L.
    Marti-Panameno, E.
    Quantum Electronics(English Translation of the Journal Kvantovaya Elektronika), 27 (11):
  • [8] Femtosecond maxwellian solitons. II. Verification of a model of the nonlinear Schrodinger equation in the theory of optical solitons
    Serkin, VN
    Schmidt, EM
    Belyaeva, TL
    Marti-Panameno, E
    Salazar, H
    QUANTUM ELECTRONICS, 1997, 27 (11) : 940 - 943
  • [9] Femtosecond nanometer-sized optical solitons
    Pusch, Andreas
    Hamm, Joachim M.
    Hess, Ortwin
    PHYSICAL REVIEW A, 2011, 84 (02)
  • [10] Polarized Femtosecond Optical Solitons in Cubic Media
    Doktorov, E. V.
    Sakovich, S. Y.
    Vlasov, R. A.
    Journal of the Physical Society of Japan, 65 (04):