ON IBRAGIMOV-IOSIFESCU CONJECTURE FOR PHI-MIXING SEQUENCES

被引:29
作者
PELIGRAD, M
机构
[1] Department of Mathematical Sciences, University of Cincinnati, Cincinnati
基金
美国国家科学基金会;
关键词
central limit theorem; invariance principle; φ-mixing sequences;
D O I
10.1016/0304-4149(90)90008-G
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this paper is to give new central limit theorems and invariance principles for φ-mixing sequences of random variables that support the Ibragimov-Iosifescu conjecture. A related conjecture is formulated and a positive answer is given for the distributions that have tails regularly varying with the exponent -2. © 1990.
引用
收藏
页码:293 / 308
页数:16
相关论文
共 20 条
[1]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[2]   A CENTRAL LIMIT-THEOREM FOR STATIONARY RHO-MIXING SEQUENCES WITH INFINITE VARIANCE [J].
BRADLEY, RC .
ANNALS OF PROBABILITY, 1988, 16 (01) :313-332
[3]   CENTRAL LIMIT-THEOREMS FOR MIXING SEQUENCES OF RANDOM-VARIABLES UNDER MINIMAL CONDITIONS [J].
DEHLING, H ;
DENKER, M ;
PHILIPP, W .
ANNALS OF PROBABILITY, 1986, 14 (04) :1359-1370
[4]  
DENKER M, 1986, PROGR PROBAB STATIST, P269
[5]   ASYMPTOTIC NORMALITY OF TRIMMED SUMS OF PHI-MIXING RANDOM-VARIABLES [J].
HAHN, MG ;
KUELBS, J ;
SAMUR, JD .
ANNALS OF PROBABILITY, 1987, 15 (04) :1395-1418
[6]   THE INVARIANCE-PRINCIPLE FOR PSI-MIXING SEQUENCES [J].
HERRNDORF, N .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 63 (01) :97-108
[7]  
Ibragimov I. A., 1975, Theory of Probability and Its Applications, V20, P135, DOI 10.1137/1120011
[8]  
Ibragimov IA, 1971, INDEPENDENT STATIONA
[9]  
Iosifescu M., 1969, RANDOM PROCESSES LEA
[10]  
IOSIFESCU M, 1977, 5TH P C PROB THEORY, P51