CALDERON-REPRODUCING FORMULA FOR THE CONTINUOUS WAVELET TRANSFORM RELATED TO THE WEINSTEIN OPERATOR

被引:0
作者
Hleili, Khaled [1 ]
Hleili, Manel [2 ]
机构
[1] Northern Border Univ, Fac Sci, Dept Math, Ar Ar, Saudi Arabia
[2] Univ Tunis El Manar, Fac Sci Tunis, Tunis, Tunisia
来源
BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 2018年 / 10卷 / 04期
关键词
Weinstein operator; wavelet transform; inversion formulas; extremal functions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the continuous wavelet transform associated with the Weinstein operator and we prove for this transform a reproducing inversion formulas of Calderon's type. Next, we study the extremal functions associated to the continuous wavelet transform.
引用
收藏
页码:31 / 44
页数:14
相关论文
共 19 条
[11]   THE WEIERSTRASS TRANSFORM AND AN ISOMETRY IN THE HEAT-EQUATION [J].
SAITOH, S .
APPLICABLE ANALYSIS, 1983, 16 (01) :1-6
[13]  
Saitoh S., 2005, KODAI MATH J, V28, P359, DOI [10.2996/kmj/1123767016, DOI 10.2996/KMJ/1123767016]
[14]  
Saitoh S., 2004, APPL ANAL, V83, P727, DOI [10.1080/00036810410001657198, DOI 10.1080/00036810410001657198]
[15]  
Soltani F., 2005, APPL ANAL, V84, P541, DOI [10.1080/00036810410001731492, DOI 10.1080/00036810410001731492]
[16]   BEST APPROXIMATION FORMULAS FOR THE DUNKL L2-MULTIPLIER OPERATORS ON Rd [J].
Soltani, Fethi .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (01) :305-328
[17]  
Stein E., 1971, INTRO FOURIER ANAL E
[18]  
Stein E. M., 1956, T AM MATH SOC, V83, P482
[19]  
Weinstein A., 1962, PROCEEDING S FLUID D, V67, P29