CALDERON-REPRODUCING FORMULA FOR THE CONTINUOUS WAVELET TRANSFORM RELATED TO THE WEINSTEIN OPERATOR

被引:0
作者
Hleili, Khaled [1 ]
Hleili, Manel [2 ]
机构
[1] Northern Border Univ, Fac Sci, Dept Math, Ar Ar, Saudi Arabia
[2] Univ Tunis El Manar, Fac Sci Tunis, Tunis, Tunisia
来源
BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 2018年 / 10卷 / 04期
关键词
Weinstein operator; wavelet transform; inversion formulas; extremal functions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the continuous wavelet transform associated with the Weinstein operator and we prove for this transform a reproducing inversion formulas of Calderon's type. Next, we study the extremal functions associated to the continuous wavelet transform.
引用
收藏
页码:31 / 44
页数:14
相关论文
共 19 条
[1]  
[Anonymous], INTRO WAVELETS
[2]  
Ben Nahia Z., 1994, POTENTIAL THEORY PRO, V94, P223
[3]  
Ben Nahia Z, 1994, POT THEOR P ICPT 94, P243
[4]  
Brelot M., 1978, LECT NOTES MATH, P18
[5]  
Daubechies I., 1992, CBMS NSF REGIONAL C, DOI [DOI 10.1137/1.9781611970104, 10.1137/1.9781611970104]
[6]   Inversion of Weinstein intertwining operator and its dual using Weinstein wavelets [J].
Gasmi, Abdessalem ;
Ben Mohamed, Hassen ;
Bettaibi, Neji .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (01) :289-307
[7]   DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE [J].
GROSSMANN, A ;
MORLET, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (04) :723-736
[8]   SOME RESULTS ON TCHEBYCHEFFIAN SPLINE FUNCTIONS [J].
KIMELDORF, G ;
WAHBA, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1971, 33 (01) :82-+
[9]  
Matsuura T., 2005, Journal of Inverse and ILL-Posed Problems, V13, P479, DOI 10.1163/156939405775297452
[10]  
Matsuura T., 2007, FRACT CALC APPL ANAL, V2, P161