FIXED-POINT QUASI-NEWTON METHODS

被引:11
|
作者
MARTINEZ, JM
机构
[1] Univ of Campinas, Campinas
关键词
QUASI-NEWTON METHODS; FIXED POINTS; NONLINEAR SYSTEMS; LEAST-CHANGE SECANT METHODS;
D O I
10.1137/0729081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article studies iterative methods defined by x(k+1) = PHI(x(k), E(k)), where X(k) is-an-element-of R(n) and E(k) lie on a space of parameters. Sufficient conditions are established for local convergence and for convergence at an ideal linear or superlinear rate. A theory of least-change secant update methods for this class of processes is developed. Several examples are given showing a wide range of applications of the new theory.
引用
收藏
页码:1413 / 1434
页数:22
相关论文
共 50 条
  • [21] UAV Swarm Planning accelerator on FPGA with low latency and fixed-point L-BFGS Quasi-Newton solver.
    Zhang, Suquan
    Yu, Jincheng
    Xu, Yuanfan
    Wang, Yu
    2023 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE TECHNOLOGY, ICFPT, 2023, : 284 - 285
  • [22] Structure of quasi-Newton minimization methods
    A. M. Vetoshkin
    Computational Mathematics and Mathematical Physics, 2010, 50 : 778 - 791
  • [23] QUASI-NEWTON METHODS FOR CONSTRAINED OPTIMIZATION
    TAPIA, R
    SIAM REVIEW, 1976, 18 (04) : 830 - 830
  • [24] Quasi-Newton methods for image restoration
    Nagy, J
    Palmer, K
    ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS XIV, 2004, 5559 : 412 - 422
  • [25] OPTIMAL CONDITIONING OF QUASI-NEWTON METHODS
    SHANNO, DF
    KETTLER, PC
    MATHEMATICS OF COMPUTATION, 1970, 24 (111) : 657 - &
  • [26] Quasi-Newton methods for stochastic optimization
    Levy, MN
    Trosset, MW
    Kincaid, RR
    ISUMA 2003: FOURTH INTERNATIONAL SYMPOSIUM ON UNCERTAINTY MODELING AND ANALYSIS, 2003, : 304 - 309
  • [27] Machine Learning in Quasi-Newton Methods
    Krutikov, Vladimir
    Tovbis, Elena
    Stanimirovic, Predrag
    Kazakovtsev, Lev
    Karabasevic, Darjan
    AXIOMS, 2024, 13 (04)
  • [28] MULTISTEP QUASI-NEWTON METHODS FOR OPTIMIZATION
    FORD, JA
    MOGHRABI, IA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 50 (1-3) : 305 - 323
  • [29] QUASI-NEWTON METHODS, MOTIVATION AND THEORY
    DENNIS, JE
    MORE, JJ
    SIAM REVIEW, 1977, 19 (01) : 46 - 89
  • [30] Structure of Quasi-Newton Minimization Methods
    Vetoshkin, A. M.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (05) : 778 - 791