In an effort to more fully investigate spinal reflex pathways in humans, we measured the isometric force-time curve of the tibial nerve H-reflex in 12 college age subjects. We also conditioned the reflex with a contralateral H-reflex stimulus or a contralateral tendon-tap, to ascertain the effects of crossed spinal segmental inputs on alpha motoneuron excitability. The conditioning stimulus preceded the test reflex by 10, 25, 40, 55, 70, 85, 100, 115, 130 or 145 msec. The results demonstrate that a conditioning tibial nerve H-reflex produced marked facilitation onto the contralateral triceps surae motoneurons, predominantly at longer-latency intervals. Conversely, a conditioning Achilles tendon-tap produced long-latency inhibition to the triceps surae. These results demonstrate that differential motoneuron excitability changes can be produced by electrical and mechanical conditioning stimuli. Moreover, these excitability changes may be long lasting and only appear after a relatively long latency. Several neurophysiological mechanisms are proposed to contribute to these changes.