THE NONEXISTENCE OF SYMPLECTIC MULTI-DERIVATIVE RUNGE-KUTTA METHODS

被引:10
作者
HAIRER, E
MURUA, A
SANZSERNA, JM
机构
[1] UNIV GENEVA,DEPT MATH,CH-1211 GENEVA 24,SWITZERLAND
[2] EUSKAL HERRIKO UNIB,FAK INFORMAT,E-20080 SAN SEBASTIAN,SPAIN
[3] UNIV VALLADOLID,FAC CIENCIAS,DEPT MATEMAT APLICADA & COMPUTAC,VALLADOLID,SPAIN
来源
BIT | 1994年 / 34卷 / 01期
关键词
MULTI-DERIVATIVE RUNGE-KUTTA METHODS; SYMPLECTIC METHODS; IRREDUCIBLE METHODS;
D O I
10.1007/BF01935017
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A sufficient condition for the symplecticness of q-derivative Runge-Kutta methods has been derived by F. M. Lasagni. In the present note we prove that this condition can only be satisfied for methods with q less-than-or-equal-to 1, i.e., for standard Runge-Kutta methods. We further show that the conditions of Lasagni are also necessary for symplecticness so that no symplectic multi-derivative Runge-Kutta method can exist.
引用
收藏
页码:80 / 87
页数:8
相关论文
共 7 条
[1]  
CALVO MP, IN PRESS NUMER MATH
[2]  
DAHLQUIST G, 1979, TRITANA7906 REP
[3]  
HAIRER E, IN PRESS ADV COMPUT
[4]  
Hairer E., 1993, SOLVING ORDINARY DIF, V8
[5]  
HUNDSDORFER WH, 1981, NUMER MATH, V36, P319, DOI 10.1007/BF01396658
[6]  
LASAGNI FM, UNPUB INTEGRATION ME
[7]  
Sanz-Serna J.M., 1992, ACTA NUMER, V1, P243, DOI [DOI 10.1017/S0962492900002282, 10.1017/S0962492900002282]