COMBINATORIAL DESIGNS RELATED TO THE STRONG PERFECT GRAPH CONJECTURE

被引:31
作者
CHVATAL, V
GRAHAM, RL
PEROLD, AF
WHITESIDES, SH
机构
[1] STANFORD UNIV,DEPT OPERAT RES,STANFORD,CA 94305
[2] DARTMOUTH COLL,HANOVER,NH 03755
关键词
D O I
10.1016/0012-365X(79)90114-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When α, ω are positive integers, we set n = αω + 1 and look for zero-one matrices X, Y of size n × n such that XY= YX = J - I, JX = XJ = αJ, JY = YJ = ωJ. Simple solutions of these matrix equations are easy to find; we describe ways of constructing rather messy ones. Our investigations are motivated by an intimate relationship between the pairs X, Y and minimal imperfect graphs. © 1979.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 13 条
  • [1] BERGE C, 1962, 13IEME COMM ASS GEN
  • [2] Berge C, 1961, WISS ZM LUTHER U HAL, P114
  • [3] BLAND RW, UNPUBLISHED
  • [4] COMBINATORIAL DESIGNS AND RELATED SYSTEMS
    BRIDGES, WG
    RYSER, HJ
    [J]. JOURNAL OF ALGEBRA, 1969, 13 (03) : 432 - &
  • [5] STRONG PERFECT GRAPH CONJECTURE
    CHVATAL, V
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 20 (02) : 139 - 141
  • [6] RESOLVABLE BALANCED BIPARTITE DESIGNS
    HUANG, C
    [J]. DISCRETE MATHEMATICS, 1976, 14 (04) : 319 - 335
  • [7] HUANG C, 1974, DISCRETE MATH, V9, P147
  • [8] Huang C., 1973, UTILITAS MATHEMATICA, V4, P55, DOI DOI 10.1016/0012-365X(74)90145-9
  • [9] HUANG HC, 1976, OR308 CORN U DEP TEC
  • [10] Lovasz L., 1972, DISCRETE MATH, V2, P253, DOI DOI 10.1016/0012-365X(72)90006-4