MEASURING RATES OF CONVERGENCE OF NUMERICAL ALGORITHMS

被引:1
|
作者
BARZILAI, J [1 ]
DEMPSTER, MAH [1 ]
机构
[1] UNIV ESSEX,DEPT MATH,COLCHESTER CO4 3SQ,ESSEX,ENGLAND
关键词
NUMERICAL ALGORITHMS; CONVERGENCE RATES; COMPARISON SEQUENCES;
D O I
10.1007/BF00940703
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We analyze the behavior of common indices used in numerical linear algebra, analysis, and optimization to measure rates of convergence of an algorithm. A simple consistent axiomatic structure is used to uniquely define convergence rate measures on the basic linear, superlinear, and sublinear scales in terms of standard comparison sequences. Agreement with previously utilized indices and related measures is discussed.
引用
收藏
页码:109 / 125
页数:17
相关论文
共 50 条
  • [31] Rates of convergence for a class of global stochastic optimization algorithms
    Yin, G
    SIAM JOURNAL ON OPTIMIZATION, 1999, 10 (01) : 99 - 120
  • [32] Correction to: convergence rates for Kaczmarz-type algorithms
    Constantin Popa
    Numerical Algorithms, 2019, 82 : 1117 - 1120
  • [33] CONVERGENCE RATES OF INERTIAL FORWARD-BACKWARD ALGORITHMS
    Attouch, Hedy
    Cabot, Alexandre
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (01) : 849 - 874
  • [34] On the rates of convergence of parallelized averaged stochastic gradient algorithms
    Godichon-Baggioni, Antoine
    Saadane, Sofiane
    STATISTICS, 2020, 54 (03) : 618 - 635
  • [35] Greedy algorithms for classification - Consistency, convergence rates, and adaptivity
    Mannor, S
    Meir, R
    Zhang, T
    JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 4 (04) : 713 - 742
  • [36] Rates of convergence of randomized Kaczmarz algorithms in Hilbert spaces
    Guo, Xin
    Lin, Junhong
    Zhou, Ding-Xuan
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 61 : 288 - 318
  • [37] CONVERGENCE RATES FOR GREEDY ALGORITHMS IN REDUCED BASIS METHODS
    Binev, Peter
    Cohen, Albert
    Dahmen, Wolfgang
    Devore, Ronald
    Petrova, Guergana
    Wojtaszczyk, Przemyslaw
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (03) : 1457 - 1472
  • [38] RATES OF CONVERGENCE FOR STOCHASTIC-APPROXIMATION TYPE ALGORITHMS
    KUSHNER, HJ
    HUANG, H
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1979, 17 (05) : 607 - 617
  • [39] Gradient algorithms for quadratic optimization with fast convergence rates
    Pronzato, Luc
    Zhigljavsky, Anatoly
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 50 (03) : 597 - 617
  • [40] Gradient algorithms for quadratic optimization with fast convergence rates
    Luc Pronzato
    Anatoly Zhigljavsky
    Computational Optimization and Applications, 2011, 50 : 597 - 617