Remark on Voronovskaja theorem for q-Bernstein operators

被引:0
|
作者
Finta, Zoltan [1 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, 1 Kogalniceanu St, Cluj Napoca 400084, Romania
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2011年 / 56卷 / 02期
关键词
Voronovskaja theorem; q-integers; q-Bernstein operators; K-functional; first order Ditzian-Totik modulus of smoothness;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish quantitative Voronovskaja type theorems for the q-Bernstein operators introduced by Phillips in 1997. Our estimates are given with the aid of the first order Ditzian-Totik modulus of smoothness.
引用
收藏
页码:335 / 339
页数:5
相关论文
共 50 条
  • [41] Note on q-Bernstein-Schurer operators
    Muraru, Carmen-Violeta
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02): : 489 - 495
  • [42] On certain q-analogues of the Bernstein operators
    Agratini, Octavian
    CARPATHIAN JOURNAL OF MATHEMATICS, 2008, 24 (03) : 281 - 286
  • [43] The continuity in q of the Lupaş q-analogues of the Bernstein operators
    Gurel Yilmaz, Ovgu
    Ostrovska, Sofiya
    Turan, Mehmet
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (02)
  • [44] q-Bernstein-Schurer-Kantorovich Operators
    Ozarslan, Mehmet Ali
    Vedi, Tuba
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [45] ON ESTIMATION OF UNIFORM CONVERGENCE OF ANALYTIC FUNCTIONS BY (p, q)-BERNSTEIN OPERATORS
    Mursaleen, M.
    Khan, Faisal
    Saif, Mohd
    Khan, Abdul Hakim
    KOREAN JOURNAL OF MATHEMATICS, 2019, 27 (02): : 505 - 514
  • [46] The approximation of all continuous functions on [0,1] by q-Bernstein polynomials in the case q → 1+
    Ostrovska, Sofiya
    RESULTS IN MATHEMATICS, 2008, 52 (1-2) : 179 - 186
  • [47] Bivariate q-Bernstein-Schurer-Kantorovich Operators
    Agrawal, P. N.
    Finta, Zoltan
    Kumar, A. Sathish
    RESULTS IN MATHEMATICS, 2015, 67 (3-4) : 365 - 380
  • [48] A Quantitative Variant of Voronovskaja's Theorem
    Gonska, Heiner
    Tachev, Gancho
    RESULTS IN MATHEMATICS, 2009, 53 (3-4) : 287 - 294
  • [49] Convergence of λ-Bernstein operators based on (p, q)-integers
    Cai, Qing-Bo
    Cheng, Wen-Tao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [50] King Type (p, q)-Bernstein Schurer Operators
    Bawa, Parveen
    Bhardwaj, Neha
    Bhatia, Sumit Kaur
    THAI JOURNAL OF MATHEMATICS, 2023, 21 (03): : 431 - 443